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Abstract 

With general acceptance that the flow between two coaxial rotating spheres or spherical Taylor–Couette 
flow is highly structured and has come a wealth of literature dealing with instabilities in laminar–turbulent 
regime. The present work regarding new measurements point out the possible effects of gravity and free 
surface on the onset of instabilities in spherical Taylor–Couette flow. The phenomena were described by 
visualization techniques in such a way as Taylor number Ta increases according to the appearance of 
instabilities induced by means of an inclination α (i.e. gravity effect) of the system of the flow and this 
constrained to move step by step on the angular range °≤≤° 900 α from the vertical axis (α=0°). It is 
observed that when the system is completely filled H=Hmax the angle of inclination has no effect. For a 
given height limitation of the flow H<Hmax , the most significant result concerns the dependence on α of 
the onset wavy mode instability, say, Tc1=Tc1(α) while Tc1 characterize the appearance of the Taylor 
vortex flow remains unchanged as α is increasing. Another significant result concerns the relaminarization 
of the flow as both values of the Taylor number Ta and α are increasing. 

 

 
 
I. INTRODUCTION 

The flow in a spherical annular space is one of the 
important problems in hydrodynamics physics. In 
particular, when it acts to better understanding 
certain natural phenomena in Physics of the 
Atmosphere [1] (meteorology), in astrophysics [2] 
(dynamic of stars and plantery), solid earth 
geophysics (dynamo effect) or to ensure the control 
of industrial operations particularaly, Centrifugation 
processing as crystalline growth and Tribology.  

A that time, the majority of the work devoted to 
this geometry are carried out in case of a vertical 
system and completely filled. In theoretical works,  
V.S. Sorokin [3] has proposed an approximate 
solution followed by the prediction of K. Bratukhin 
[4] who obtained an approximate limit of linear 
stability for a radius report 5.0RR 21 ==η , 
corresponding to the gap near to the unit 

( ) 1RRR 212 ≅−=δ . Moreover, the flow between 
eccentrics rotating spheres was approached 
analytically by B.R. Munson [5] for the basic laminar 
flow, by treating all the possible cases: rotating inner 
sphere, the outer fixed one; two Co-rotating spheres 

and in counter-rotation. G. Schrauf [6] examined the 
influence of   on the first appearance of a pair of 
vortex of Taylor in calculating the axisymmetric 
stationary solutions but not necessarily stable.  
The observations are frequently realized in spherical 
geometry where the inner sphere is rotating and the 
outer one is at rest. The measurements were carried 
out for small and medium gap. It is noted, in each 
case, that the vortex of Taylor exists as in the flow 
between coaxial cylinders [G.ITaylor [7]]. Thus, 
G.N. Khlebutin [8] is the first author to be discovered 
experimentally in 1968 the existence of the vortex of 
Taylor in this system of flow for a medium gap of 
0.19. 

Other investigations on the instability of Taylor in 
the flow between coaxial spheres were realized by 
V.I Yakushin [9], B.R. Munson & M. Menguturk 
[10], M. Wimmer [11], I.M. Yavorskaya & Al [12], 
and K. Nakabayashi & al. [13] [14] [15] [16] and,    
P. Bar-Yoseph & al [17]. We note that in the case of 
a wide gap configuration, experimental observations 
experimental are very few. Thus B.R. Munson &    
M. Menguturk [10] and A.M. Waked & B.R. 
Munson [18] showed that the laminar basic flow can 
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become unstable by direct transition regime to the 
turbulent flow whereas I.M. Yavorskaya & Al [12] 
have detected a large regime of transition until 
δ=0.54, where secondary waves persist before the 
flow becomes turbulent. However, it appears that the 
description of the behavior of these waves seems not 
very detailed.  

Actually, considering the great interest and the 
richness which this configuration has on the 
hydrodynamic, the researchers are also interested in 
mechanisms related to this type of movement to 
study the laminar–turbulent transition regime 
including various mode of instabilities in order to 
give some explanation to the phenomena of chaos 
and turbulence underthe influence of several effects  
for examples, 

– Geometrical effects : Effect of gap δ [19] [20] 
[21] 

– Heating effects [22] [23] [24] 
– Dynamic effects : effect of the field magnetic 

[25], effect of axial flow [26] … 
 

Up to now, many theorical and experimental 
investigations are carried out, without approaching, 
to our knowledge, the effect of the inclination α of 
the system linked to gravity effect. Our objective 
consists in analyzing by photometry technic the 
influence of the parameter α on the occurrence or the 
disappearance of certain structures of the flow in 
laminar–turbulent transition regime. On the basis of 
these results we try to establish phenomenological 
laws representing the evolution number of Taylor 
according to the inclination α. 

 
II. EXPERIMENTS 

 All the different experimental set-ups are, 
however, basically the same. There is a rotating inner 
sphere (1) of R1=45mm radius and spherical outer 
shell (2) of R2=50mm radius, which is kepted at rest 
for all experiment; both made of Plexiglas. In this 
way one obtains the gap δ= (R2-R1)/R1=0.11(figure 
1). The inner sphere is driven by a variable-speed 
electric motor. The speed of rotation is controlled 
without friction by using a tachymeter (photo-optics). 
The temperature is measured in order to determine 
the viscosity of the fluid in annulus by digital 
thermometer.  

 
Figure 1: Flow system 

 
  We include to this device a new system (figure 2) 

in order to ensure the inclination of the apparatus in 
order to study the effect of the parameter α on the 
occurrence of structure within the flow.  

 

     
Figure 2 : Inclination system  

 
 

  
 
 

Figure 3 : Experimental apparatus 
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Essence (Similli) and Vaseline oil (with 
concentration 80% and 20% respectively) were used 
as the fluid. For the flow visualisation, a small 
amount of aluminium flakes (typical mean dimension 
17 μm and a concentration of about 2 g/l produces 
good signals) in suspended in the fluid; this amount 
is small enough not to influence the viscosity or the 
flow field. 

 
III. CONDITION OF SETTING IN MODE OF 

SPEEDS 
The geometrical characteristics are fixed and 

move neither in space nor in time, the value of the 
parameter of control (Ta) depends of velocity of the 
rotate sphere Ω1, annular space d=R1–R2 and the 
kinematic viscosity ν of the fluid used 

δReTa =  with   
ν
Ω

ν
dRdVRe 111 ==  

Where Re indicates the Reynolds number, 
1Rd=δ denotes the gap, V1= R1Ω1 the linear 

velocity of the inner sphere. As the bending flow, it 
is necessary to use the Froude number, 

α
Ω

α cosHg
R

cosHg
VFr 111 ==  

Featuring the influence of gravity effect via α. 
For that, we adopted it even procedure for each 

test while proceeding systematically by increasing 
speed W1 so as to satisfaying the the inequality 
condition, 

%1
1

1 ≤
Ω
ΩΔ

            (1) 

This condition also appears necessary to ensure a 
good reproducibility of measurements which is 
besides enough near to experimental uncertainty on 
the angular velocity Ω1.

The aspect ratio
d
H

=Γ  is defining the axial 

limitation such that the system is filled for a given 
value of height H. 
 
Adopted procedure for the various tests is as follows: 

From the rest, we increase the velocity of the 
interior sphere gradually by respecting the preceding 
inequality; we stops a few minutes order to allow the 
flow to stabilize itself then we observes the 
appearance of phenomena. 

For chosen Ω1, characterizing the appearance of 
a  g i v e n  p h e n o m e n o n ,  m e a s u r e m e n t s  o f 
characteristics of the structures considered are noted 
and we take an image of the state of the flow. The 

process thus described corresponds to a rigorous 
procedure that we calls, in thermodynamics, quasi-
static mode allowing us to observe the conditions of 
reversibility associated with the movement.  

 
III RESULTS AND DISCUSSION 

The processing of photometric data leads to 
establish the law of variation of the critical Taylor 
number Tac bound with the appearance of 
instabilities according to the inclination α. 

The observations carried outin case of the system 
is completely filled H=Hmax or Γ=Γmax= 20, the 
inclination α is then without influence on the 
occurence of instabilities. On the other hand, for a 
system partially filled Γ<Γmax the inclination α play 
an important role. Examinating of the experimental 
results enabled us to analyze the effect of the 
inclination α, allowing to establish a 
phenomenological laws, obeying linear or 
exponential expressions,that one presents in the 
following general forms, 

- Laws of the linear type: for the case of system 
completely filled 

( ) ATc =α  
- Laws of the exponential type:  

• Exponentiel law 
( ) ( )00C expBTcTa ααα −+=  

• Gaussien law, 
( ) ( )( )00 DexpCTcTc ααα −−+=  

• Boltzmaien law, 

( )( )[ ]Fexp1
ETc)(Ta

0
0C αα

α
−+

+=  

All constants A, B, C, D, E, F, Tc0 and α0 are 
determined by adjustment on the experimental 
curves, présented in the following table, 

 
The systematization of these tests lead to show 

the noticable influence of the inclination α of the 
system of flow on the conditions of appearances of 
instabilities that we summerize in the form of set of 
curves (Figure 4). 
The laws of the linear type are valid for the case of a 
system completely filled Γ=Γmax= 20. (Figure 5, 6) 

For a system partially filled (Γ=19, Γ=18, Γ=10), 
one could highlight the remarkable influence of the 
angle of inclination α. The interest of such an 
evolution is revealed by the existence of a very 
important particular value: for a critical angle 
α = αC= 30° correspondent to H=HC=90mm that is to 
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say Γ = ΓC = 18. One observes the destruction of any 
structure within the flow (Figure 7). 

Generaly, the most effect of the inclination a is to 
retard the occurrence of the instabilities Tci (i=1, 2, 
3, 4) and we note that the disappearance of some 
modes for an other critical value of inclination a for 
example the desaperance of the Taylor vortex flow at 

 correspanding to aspect ratio Γ=10. 
and the desaperance of the regime of spiral mode and 
the wavy mode (Tc

°== 45*
1cαα

3) For Γ=Γc=10. Figure 4.D  
When the flow is in load, the aspect ratio is at 

maximum, one observes that the evolution of the 
critical parameters Tci (i=1, 2, 3, 4) are insensitive 
with the angular effect α and consequantly with the 

gravity force (Figure 8.A). On the other hand, when 
Γ decrease we note that an evolution of the previous 
critical parameters Tci (i=1, 2, 3, 4).(Figure 8.B, 8.C)  

As the bending flow, it is necessary to represent 
the evolution of critical taylor number according to 
the Froude number Fr Featuring the influence of 
gravity effect via α.  

Figure 11 show partially cures of the variation of 
critical taylor number according to the Froude 
number Fr Tci (i=1, 2, 3, 4) we expand our 
invistigation to other values of aspect ratio G for the 
occurrence of the Taylor vortex flow.(figure 12) 
[27][28] 

 
 
 
 

Tac 
 

Γ 
Tc1 Tc2 Tc3 Tc4

 
 
 

20 

linear Laws 

     0=B
  43,30=A  

linear Laws 

 
   0  =B

47,47  =A
linear Laws 

    0=B
54,74=A

 

linear Laws 

    0=B
61,50 =A

 

 
 

19 
 

Gaussien law 

0031.0D
46.3C

75.62
44.01Tc

0

0

=
=
=
=

α
 

Boltzmaien law 

2.97F
92.392E

87.05
47.86Tc

0

0

=
−=

=
=

α
 linear Laws 

  0,15 =B
55,77=A  

Gaussien law 

0026.0D
20.34C

83.07
65.17Tc

0

0

=
=
=
=

α  

 
 

18 
 

Gaussien law 

 

0003.0D
35.11C

84.57
43.25Tc

c

0

=
=
=
=

α

Exponential law 

10.16
032.0B

95.49Tc

0

0

=
=

=

α

 

Gaussien law 

0043.0D
27.7C

39.06
54.88Tc

0

0

=
=
=
=

α  

Gaussien law 

0023.0D
82.42C

75.48
63.96Tc

0

0

=
=
=
=

α  

 
10 

Gaussien law 

0022.0D
72.83C

49.69
42.72Tc

0

0

=
=
=
=

α  

Gaussien law 

0016.0D
74.198C

62.56
59.12Tc

0

0

=
=
=
=

α  
― 

Gaussien law 

0060.0D
80.156C

28.57
52.32Tc

0

0

=
=
=
=

α  

 
 
 

Table 1 :  value of constants of the phenomenological law of the evolution of the 
critical Taylor number TcI(i=1..4) according to the inclination α 
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Figure 4 : Evolution of the critical Taylor number TcI(i=1..4) according to the inclination α 

 

        
 α = 0° α = 20° α = 60° α = 90° 

Figure 5: Effect of the inclination α on the vortex of Taylor Ta=45, Γ= 20 
 

       
 α = 0° α = 30° α = 60° α = 90° 

Figure 6: Effect of the inclination α on the Spiral Wavy Mode Ta=64, Γ= 20 
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 α = 0° α = 30° α  = 80 °  α  = 90° 

Figure 7: Effect of the inclination α on vortex of Taylor Ta=45, Γ= 19 

 

               
 α  = 0° α = 40° α = 60° α = 90° 

Figure 8: Effect of the inclination α on the Spiral Wavy Mode Ta=77, Γ= 19 

 

          
 α  = 0° α  = 20° α  = 30° α = 90° 

Figure 9: Effect of the inclination α on the vortex of Taylor Ta=45, Γ= 18 
(Relaminarization α = αC= 30°) 

 
 

          
 α  = 0° α  = 30°  α  = 60°  α  = 90° 

Figure 10: Effect of the inclination α on the Spiral Wavy Mode Ta=80, Γ= 18 
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Figure 11 : Evolution of the critical Taylor number TcI(i=1..4) according to the inclination α (at right) and 

according to Froud number Fr (at left) 
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Figure 12 : Evolution of the critical Taylor number Tc1 according to Froud number Fr 

 
 
 
 
 

IV CONCLUSION 
The present experimental study made it 

possible to highkight the influence of the inclination 
α  of the system of flow on release of the phenomena 
of instabilities such as the Taylor vortices, Spiral 
Mode and Spiral Wavy Mode etc….  

Now, we may say that the angle of 
inclination α does not have any effect on the 
occurence of the instabilities in a system completely 
filled (Γ=Γmax=20). On the other hand, the 
inclination α play a major part in a system partially 
filled, Γ<Γmax giving place to significant 
modifications of the movement. In Particular, we are 
focusing the effect of relaminarization of the flow for 
a critical value of the angle of inclination αc.  

These measurements require necessaraly 
further investigation to examine with alternatively, 
each one of the effects or their combination on each 
structure. Also, it would be interesting to extend 
them systematically to the chaotic regime until to 
completely developed turbulence 
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