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Abstract. This paper deals with axisymmmetry breaking instabilities in Czochralski process
of crystal growth. Numerical linear stability analysis was carried out using the axisymmetric
bulk flow model. Stability diagrams of critical Grashof numbers Grc and frequencies ωc

dependent on aspect ratio α(=height/radius), 0.4 ≤ α ≤ 1.0 and Prandtl number Pr = 0.01
are shown. Computations were carried out using the spectral element method in the meridional
plane with Fourier decomposition in the azimuthal direction. It was found that convective
instability sets in through an Hopf bifuraction. First 10 modes were analyzed, only the first
5 (0,1,2,3,4) were important. Two different cases of seed to crucible radii ratio β = Rx

Rx

were
tested. Sensitivity of mode transitions was observed at β = 0.4 and parameter range of α > 0.65
and in some regions modes were observed approaching each other closely. For 0.4 ≤ α ≤ 0.85
dispersion relation analysis reveals convective instability effects while for larger α rotational
effects appear.
Further more for β = 0.5 the behaviour of mode switches seems quite regular with fewer mode
switches. This may imply that the parameter point β = 0.4 is a bifurcation point.

1. Introduction

Czochralski based crystal growth processes may display transitions from steady axisymmetric
flow into asymmetric time dependent flows. This in turn may be a reason to inhomogeneities in
the grown crystal ( [12], [20]). The dynamics of the flow are complex and require the solution of
the 3D time dependent flow equations coupled with the heat equation. Many published works
address the 3D problem (e.g. [25]), however three dimensional, time-dependent simulations are
CPU-time consuming and require the simultaneous solution of millions of equations depending
on initial conditions and types of perturbations. An alternative approach employing the methods
of hydrodynamic stability analysis ( [17], [9], [23], [6], [4], [3]), offers considerable reduction in
computer resource usage. In this approach the stability of axisymmetric steady flow with respect
to 3D perturbations is analyzed and critical Grasshof number and frequency are computed.

Stability analysis of the flow in cylinders heated from below was carried out in ( [9], [23]).
The effects of wall conductivity on convection in cylinders are complex and were studied in
[3]. Partial stability analysis for specific Prandtl number of 1.4 in Czocharalski process was
carried out in [6]. This work approaches the problem using bulk flow modelling ( [14]) based



on the international test ( [24]). The spectral elements method pioneered by Patera [19] is
used to discretize the steady axisymmetric Navier-Stokes equations coupled with the equation
of energy through the Boussinesq approximation. Pressure is eliminated using the consistent
penalty method ( [5]). The equations are then assembled and solved using preconditioned
GMRES method ( [21]). Three-dimensional time-dependent perturbations are superimposed on
the steady solution using Fourier decomposition of the azimuthal direction. The linear eigenvalue
problem is then solved using subspace iterations ( [10], [2]).
This paper is organized as follows:
In sections 2 and 3 we briefly describe the mathematical model and numerical technique employed
in this work.
In section 4 results are displayed and described.
Section 5 concludes with a brief summary.

2. Mathematical formulation of the problem

We consider a co-axial cylinder-disk configuration ( [14], [24]), where the disk represents the
seed, both are free to rotate (see Fig. 1). The equations describing the flow are:

∂u

∂t
+ (u · ∇)u = −

∇p

ρ
+ ν∇2u + γgTez (1)

∇ · u = 0 (2)

∂T
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κ
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Where ρ, ν, κ, cp are the density, kinematic viscosity, thermal conductivity and constant
pressure heat capacity of the melt respectively. γ is the coefficient of thermal expansion and ez

is the unit vector in the axial direction which is directed upwards. Let us denote by Rc, Rx, Tc,
Tx, Ωc, Ωx the crucible and seed radii, temperatures and angular velocities respectively. Length,
velocity and temperature are then normalized by Rc,

ν
Rc

and (Tc − Tx) respectively. Thus in
cylindrical coordinated the following non-dimensional equations are obtained:
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Where ∇2 and (u · ∇) in cylindrical coordinates are:
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With boundary conditions:

ur = uz = 0, uθ = rRec,
∂T

∂z
= 0 (11)

on z = 0.
ur = uz = 0, uθ = rRec, T = 1 (12)

at r = 1.

ur = uz = 0, uθ = rRex, T = 0 (13)

at 0 ≤ r ≤ β, z = α.
∂ur

∂z
=
∂uθ

∂z
= uz = 0, T =

r − β

1 − β
(14)

at β < r ≤ 1, z = α. With pole conditions at r = 0 (see [8], [15] and Fig. 1):

ur = uθ =
∂vz

∂r
=
∂T

∂r
= 0, m = 0 (15)

∂ur
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=
∂uθ
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ur = uθ = uz = T = 0, |m| > 1 (17)

Where m is the Fourier wave number defined in equation 33. Periodicity is assumed in the
azimuthal direction. The dimensionless parameters are defined as follows:

α =
H

Rc

Aspect ratio (height/crucible radius) (18)

β =
Rx

Rc

Ratio of seed to crucible radii (19)

Rex =
R2

cΩx

ν
Seed Reynolds number (20)

Rec =
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ν
Crucible Reynolds number (21)

Gr =
gγ(Tc − Tx)R3

c

ν2
Grashof number (22)

Pr =
νρcp

κ
Prandtl number (23)

3. Numerical method

The steady axisymmetric equations (which are obtained after omitting terms depending on θ)
are discretized using the spectral element method in the meridional plane:
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Here the superscript ∗ denotes the conjugate operator. With φij and ψij the basis functions
from velocity (PN space of polynomials with maximal degree N) and pressure (PN−2 space of
polynomials with maximal degree N − 2) spaces respectively (see [16], [1]). The operators in
equations ( 24- 28) are defined in appendix A.

Applying Gauss-Lobatto quadrature on integrals ( 24- 28) and assembling contributions from
the spectral elements we arrive at the problem:

(A + C(u))u +Bp−GrMTez = 0 (29)

(A+ C(u))T = 0 (30)

BTu = 0 (31)

Where in this context u = (ur, uθ, uz). Boldfaced operators A and C are the vector diffusion
and convection operators respectively. A and C represent their scalar counterparts respectively.
M is the discrete mass operator, B is the discrete gradient operator. To eliminate pressure,
penalty method is applied to equation( 31) (see [5]):

BTu = −ǫMN−2p (32)

where 0 < ǫ << 1 and MN−2 being the mass matrix in pressure space.
The penalty parameter ǫ used in this work was ǫ = 10·−7. The effect of varying ǫ on eigenvalues
computations is O(ǫ). The system is then linearized using Newton’s method and arclength
continuation is employed to march on different solution branches. Solution of the linear system
is obtained using preconditioned GMRES method. The stability of steady axisymmetric solution
is studied using 3D perturbations:

u∗ =
∞
∑

m=−∞

um(r, z)eimθ+σmt (33)

σm is complex σm = λm+iωm with σm and ωm real. When λm ≥ 0 the flow is unstable. If as well
ωm = 0 the transition is steady otherwise Hopf bifurcation exists. Substitution of perturbations
in the equations of motion, the following generalized eigenvalue problem is obtained:

Ax = σBx (34)

This problem is solved using the method of subspace iterations.

4. Results

4.1. Code validation

In order to test the code benchmark problems were solved. The steady state solver was compared
with the works of [11] (steady convection in annular cavity) and [18] (Wheeler benchmark
problem). Summary is presented in the next 2 subsections. The eigensolver was compared with
the work of [22] on onset of convection in cylindrical cavity.



Table 1. Comparison of minimal stream function Ξ values in annular cavity with unit aspect
ratio [11]
Parameter values Ξmin

Ra, Re [11]. this work
1000, 10 −0.2288 −0.2288
50000, 10 −4.122 −4.124
1000, 100 0 0

Table 2. Comparison of Critical values Grc for Pr = 0.02 and unit aspect ratio with [22]
mode Grc

[22] this work
0 36160 36160
2 38928 38940
1 41783 41783

4.1.1. Steady convection in annular cavity. The problem is stated in [11]. It involves the
numerical study of convection in a cylindrical cavity with rotating top and inner wall (see Fig.
2). This problem addresses the cooling of rotating electric machinery. Plots of the streamlines
and isotherms for α = 1, Ra = 1000, Re = 10 are presented in Fig. 3. The minimal values of
the streamfunction Ξ are compared in Table 1 for three different cases. The algorithm converges
to these final values, using one global spectral element with 18 × 18 basis functions compared
with 32 × 32 second order finite difference mesh used by [11].

4.1.2. Onset of convection in cylindrical cavity This problem is described in [22]. A cylindrical
cavity of unit aspect ratio is heated from below with anti-symmetric temperature boundary
conditions at top and bottom. The steady solution is conduction. In [22] direct numerical
simulation of the time dependent Navier-Stokes equations using spatial discretization of 5
spectral elements of 7× 7× 9 nodal points each for the x, y, z directions respectively was carried
out. Linear stability analysis for modes 0, 1, 2 was carried out on this solution and compared
with the results of [22] in Table 2.

The mesh was taken at 7×7 elements using 7×7 polynomial order per element,i.e 2500 nodal
points total.

4.1.3. International test problem This problem is stated in [18]. For schematic representation
see Fig. 1. The method used in [22] was direct numerical simulation using space discretization
of 32 × 32 second order finite difference mesh in the meridional plane coupled with Fourier
decomposition in the azimuthal direction. In this work, results computed using our code with
7 × 7 elements of 7 × 7 polynomial order each (overall 2500 nodal points) for Rex = 0, Rec =
0, P r = 0.05, β = 0.4, α = 1 can be seen in Fig. 4. For numerical comparison, the maximal
value of the stream function computed in our work is 93.18 while [22] reports the result
(using Richardson’s extrapolation) 93.16. For this problem we measured the CPU time on
the Technion’s Compaq Alpha server ES40 with 667 MHz CPU, The times recorded were 7:50
(min) for the steady state problem and 121 (min) to scan 4 Fourier modes with 10 frequency
ranges each in the eigensolver.



Table 3. Convergence of maximal stream function Ξ values for Pr = 0.01, Gr = 2 · 105 and two
cases of α

Ξmax

α 3 × 3 el. 5 × 5 el. 7 × 7 el. 9 × 9 el.
0.4 16.76 16.32 16.19 16.12
0.7 0 40.49 40.24 40.33

0 convergence was not achieved at the specified
resolution.

Table 4. Convergence of modes 2, 3 Grc values for Pr = 0.01, α = 0.65
Grc

Mode 5 × 5 el. 7 × 7 el. 9 × 9 el.
2 1.55e6 1.305e6 1.302e6
3 1.05e6 1.302e6 1.298e6

4.2. Czochralski process

Simulations were carried out on the international test problem (see Fig. 1) in the range of
parameters 0.005 ≤ Pr ≤ 0.02, 0.4 ≤ α ≤ 1.0, Rex = 500, Rec = 0 and β = 0.4, 0.5. For silicon

melt ν = 3.1 · 10−7 m2

sec
, ρ = 2750 kg

m3 , Pr = 0.01. Rex = 500 represents rotation rate of 0.6
RPM for a 50mm radius crucible. α ranges represent stages in the process, beta = 0.4, ; 0.5 is
well in the range of industrial applications. Since the functional forms of the stability curves
for the range of Prandtl numbers are similar only the case of Pr = 0.01 is presented here.
Additional simulations for the first 10 modes m = 0..9 were carried out. Only the first 5 are
relevant and will be presented here. Convergence of solver was tested for Gr = 2 ·105 at α = 0.4
and α = 0.7 by comparing maximal values of the stream function. Our chosen Lagrangian
interpolants were Legendre polynomials of the eighth degree in each direction in each element.
Results are summarized in Table 3.

Eigensolver convergence was tested for the two most dangerous modes at α = 0.65, modes
2, 3. Results are summarized in Table 4. Table 4 shows that modes 2, 3 yield practically the
same critical Gr = 1.3 · 106. Based on the convergence tests, resolution of 7× 7 elements using,
7 × 7 polynomial order per each element was chosen.

Typical steady axisymmetric picture for the range of α considered can be seen in Fig. 5 for
α = 0.6. Figs. 6 and 7 display the dependence on α of the first 5 modes for critical Gr and ω
respectively at β = 0.4. The stability curves show that at α < 0.65 mode 3 is dominant while
many mode transitions occur at α ≥ 0.65 which are accompanied by either sharp changes in
critical Gr or critical ω. However the changes in Grc and ωc do not have to be coincident. Also
modes approach each other very closely at α ≥ 0.65 as can be seen in Fig. 8. There is evidently,
sensitivity of dominant modes to geometrical aspects. We proceed by observing subsections of
Figs. 6 and 7. Figs. 8- 9 display modes 1, 2, 3, 4 for 0.6 ≤ α ≤ 0.8. . Modes 4,2,3 compete
closely for dominance at α = 0.65. At α = 0.7 modes 4,2 compete with each other closely. More
generally no asymmetric modes 1, 3 dominate in this section. 0.65 ≤ α ≤ 0.8. From Fig. 9
it can be seen that at α = 0.65, 0.75 the frequency of mode 4 fluctuates sharply 2 orders of
magnitude which is consistent with the mode switches at α = 0.65, α = 0.75.

Sensitivity of modes to aspect ratio can also be seen in Fig. 10 although not all modes
approach each other closely. Four mode switches can be accounted for in this interval. In
this interval dominant modes are asymmetric 1, 3 except for 0.8 ≤ α < 0.85. Fig 11 displays
frequencies for modes 1, 2, 3, 4 at 0.8 ≤ α ≤ 1.0. Sharp oscillations can be observed. It is



apparent therefore from the critical plots that mode switches in this section are accompanied by
sharp fluctuations of the frequency but not of Grc. The final stability diagrams (lowest critical
Grashof) at Pr = 0.01 for Grc and ωc are shown in Figs. 12 and 13 respectively.

To obtain some quantitative analysis let us define the dispersion relation as function of
m,α,Pr (see for example [13], page 452):

ωc = f(m,α,Pr,Rex) (35)

A log-log plot of the curve is depicted in Fig. 14, it is obtained by taking the frequency of
the most dominant mode as function of α. It is clearly seen that at sections I and II the curve is
almost linear in log(α) with mean slope 4. In section III the curve is almost constant. In section
IV the the curve is oscillatory. Thus at sections I and II one can deduce that ωc = O(α4), at
section III ω = f(m) with no dependence on α and at section IV, the behaviour is oscillatory.

The behaviour of ωc in sections I, II, III is typical of convective instability (see for example
[7]), while the behaviour of ωc at section IV is not typical of convective instability. Figs.
15 and 16 display typical dominant temperature perturbations at z = 0.8α, vertical velocity
perturbation look very similar and hence are not displayed here. Based on the previous discussion
we hypothesize that two different mechanisms dominate the instability depending on α.

From the foregoing discussion it is apparent that in the range of geometric and rotational
parameters considered for Pr > 0 the dominating convection mechanism is mixed both
hydrodynamic and thermal. At α > 0.85 rotational effects become dominant. Figs. 17 and
18 display stability and critical frequencies dependent of α with β = 0.5, the curves seem quite
regular with mode switch from 3 to 2 at α = 0.8 again implying transition to rotational effects
at α = 0.8. However the curves are smoother and more regular with respect to the case β = 0.4
implying the specialty of parameter point β = 0.4, it is expected that as β is increased the case
will be that of convection in a rotating lid-cylinder structure. Further work is required.

5. Concluding remarks

The present paper reports preliminary results of the study of three-dimensional instabilities of
an axisymmetric flow model of Czochralski process. Further work would include the effects of
changing the parameter values of β to obtain qualitative information. It should be emphasized
that the axisymmetric model was chosen for it’s simplicity and yet it’s spectral behaviour is rich.
From the analysis for the case of β = 0.4 it is shown that the destabilizing mechanism is mixed
thermal and rotational. Modes turned out to be sensitive to changes in geometry (aspect ratio)
and Pr numbers. From the dispersion relation analysis it is clear that the behaviour of the
critical frequencies depends on aspect ratio. With characteristic functional forms for convective
and rotational effects.

For the case of β = 0.5 more regular behaviour of the stability curves is observed implying
that parameter point β = 0.4 is special. Further work is required.

Numerical convergence was tested and shows convergence of critical numbers at relatively
coarse mesh of 7 × 7 elements of 7 × 7 polynomial order each.
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Appendix A. Spectral elements operators
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Figure 1. Czochralski process of crystal growth ( [24]) - sketch of the problem

Appendix: Figures



φ = 1, vθ = ΩRi
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z = R0 − Ri
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Figure 2. Annular cavity with rotating top and inner wall ( [11]) - sketch of the problem
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Figure 5. Streamlines (left) and isotherms (right) for Pr = 0.01, α = 0.6, Gr = 1.3 · 106
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Figure 6. Critical Gr numbers for Pr = 0.01 with wavenumber as parameter, Rex = 500, Rec =
0, β = 0.4
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Figure 7. Critical frequencies for Pr = 0.01 with wavenumber as parameter, Rex = 500, Rec =
0, β = 0.4
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Figure 8. Section III of fig. 6
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Figure 9. Section III of fig. 7
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Figure 10. Section IV of fig. 6

0.8 0.85 0.9 0.95 1
0

100

200

300

400

500

600

700

800

900

1000

α

ω
c

m=1
m=2
m=3
m=4

Figure 11. Section IV of fig. 7
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Figure 12. Stability diagram showing critical Gr numbers with Pr = 0.01, Rex = 500, Rec =
0, β = 0.4
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Figure 13. Critical frequencies with Pr = 0.01, Rex = 500, Rec = 0, β = 0.4
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Figure 14. log-log plot of the critical frequencies as function of α for Pr = 0.01, Rex =
500, Rec = 0, β = 0.4

Figure 15. Temperature perturbation at z = 0.36 for Pr = 0.01, α = 0.45, m = 3



Figure 16. Temperature perturbation at z = 0.68 for Pr = 0.01, α = 0.85, m = 1
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Figure 17. Stability diagram showing critical Gr numbers for β = 0.5 with Pr = 0.01,
Rex = 500, Rec = 0
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Figure 18. Critical frequencies for β = 0.5 with Pr = 0.01, Rex = 500, Rec = 0


