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Abstract. Instability and transition of flow past a couple of circular cylinders arranged
perpendicularly to the stream are investigated numerically. It is a steady symmetric flow
that is realized at small Reynolds numbers, but the flow becomes unstable above a critical
Reynolds number and exhibits various flow patterns. Although the resultant flow is expected
to be oscillatory, an asymmetric oscillatory flow pattern was reported to appear due to the
instability. The physical origin of the asymmetric oscillatory flow is explored in the present
paper and identified as the instability due to a stationary disturbance. A steady asymmetric
flow is found to arise from the instability in a very narrow region of the gap width between the
two cylinders. We evaluate the region of the gap width in which the steady asymmetric flow is
realized as well as the critical Reynolds number.

1. Introduction
Flow past two circular cylinders has been investigated in various areas of engineering and science.
The configuration of the cylinders is classified into three arrangements: tandem, side–by–side
and staggered. It is said that research on the flow past two tandem cylinders was motivated by
an application to twin struts to support wings of airplane so that the drag and lift coefficients on
the cylinders were the main concern of researchers. On the other hand, flow patterns have been
focused in the research of flow past two cylinders in the side-by-side arrangement, where change
of the flow pattern with an increase or decrease of the gap with between the two cylinders has
been investigated in detail.

For the tandem arrangement of two cylinders, it is known that physical quantities such as the
drag and lift coefficients and the Strouhal number show an abrupt change even when the gap
spacing between the two cylinders is continuously changed[1]. The critical spacing is evaluated to
be about 3.5 diameters, although the value scatters, depending mostly on the Reynolds number.
The existence of the critical spacing was confirmed by Ishigai et al. in their experiment in the
range of the Reynolds number of 1500 − 15000[2]. They evaluated the critical spacing to be
3.8 diameters. The origin of the abrupt change in these physical quantities was investigated
numerically by Mizushima and Suehiro, and clarified to come from a hysteretic structure of the
bifurcation diagram of solution[3].

Researches on flow past two cylinders in the side–by–side arrangement have been performed
at large Reynolds numbers (Re = 103 ∼ 104) mostly in experiments, where the frequency in the
wake behind the two cylinders was measured, and deflected flows through the gap between the
cylinders were observed[2, 4]. Ishigai et al. attributed the appearance of the deflected flow to a
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Figure 1. Configuration and co-ordinates.

Coanda effect, whereas Williamson denied it and proposed to apply the stability theory to this
problem. Recently, Kang made numerical simulation for the flow at small Reynolds numbers
such as Re = 40 ∼ 160, and classified the flow into six flow patterns depending on the Reynolds
number and the spacing between the two cylinders, in which the deflected oscillatory flow is
confirmed[5].

In spite of many reports on the flow past two cylinders in the side–by–side arrangement, their
attention was paid mostly to the flow patterns, and the origin of the flows or the mechanism to
generate such flows has not been examined in detail. We investigate the transition of the flow by
the numerical simulation and the stability analysis in the present paper. Our major objective is
to explore the origin of various flow patterns, specifically the origin of the deflected oscillatory
flow.

2. Mathematical formulation and boundary conditions
Consider the flow past two circular cylinders placed side–by–side in a uniform flow with velocity
U as illustrated in Fig. 1. The two circular cylinders have the same diameter d, and the gap
spacing between them is �. We take x-axis in the direction of the uniform flow upstream and
y-axis perpendicularly to it. Taking d and U as the representative length and velocity scales,
we define the gap ratio Γ as Γ ≡ �/d and the Reynolds number Re as Re ≡ Ud/ν, respectively.

Assuming an incompressible two–dimensional flow field and employing the stream function
ψ(x, y, t) and the vorticity ω(x, y, t) formulation, we write the governing equations of the flow,
i.e. the vorticity transport and Poisson equations, in nondimensional form as

∂ω

∂t
= N (ψ,ω) + Mω, (1)

ω = −Mψ, (2)

N (ψ,ω) ≡ ∂ψ

∂x

∂ω

∂y
− ∂ψ

∂y

∂ω

∂x
, M ≡ ∂2

∂x2
+

∂2

∂y2
.

Here, M is the two–dimensional Laplacian and N shows the nonlinear term.
The assumed infinitely extended flow field is approximated by the finite domain indicated by

ABCD in Fig. 1. Uniform flow is assumed to come to the upstream boundary (AB). The outlet
condition at the downstream boundary (CD) is approximated by the Sommerfeld radiation
condition. The non-slip condition is applied on the surface of each circular cylinder. The
condition on side boundaries (AD and BC) is also uniform flow.



3. Steady–state solution
At small Reynolds numbers, the flow is steady and symmetric with respect to the x-axis, i.e., the
centerline through the midst of the gap between the two cylinders. The solution corresponding
to the steady symmetric flow satisfies basic equations (1) and (2) under the boundary conditions,
irrespectively of the value of the Reynolds number, although it becomes unstable above a critical
value. This steady symmetric flow, say (ψ̄, ω̄), is the main flow for the linear stability analysis.
The main flow is obtained numerically by solving the steady–state vorticity transport equation:

N (ψ̄, ω̄) +
1
Re

Mω̄ = 0, (3)

which is obtained by dropping the term including the time–derivative in Eq. (1), together with
the Poisson equation:

ω̄ = −M ψ̄ (4)

under the appropriate boundary conditions.

4. Linear stability analysis
The flow is steady and symmetric with respect to the centerline through the gap between the two
cylinders (x-axis) at small Reynolds numbers. For a larger Reynolds number than the critical
value Rec, the steady symmetric flow is unstable to a disturbance and makes a transition to a
periodic flow or an asymmetric steady flow. We consider a disturbance (ψ′, ω′) added to the
main flow (ψ̄, ω̄) and express the stream function and the vorticity as

ψ = ψ̄ + ψ′, ω = ω̄ + ω′, (5)

respectively. Substituting these expressions into Eq. (1) and subtracting Eq. (3), we obtain a
nonlinear disturbance equation for the vorticity disturbance ω′ as

∂ω′

∂t
=

1
Re

Mω′ + N (ψ′, ω̄) + N (ψ̄, ω′) + N (ψ′, ω′). (6)

Neglecting the nonlinear term of the disturbance (ψ′, ω′) in Eq. (6) and assuming the time
dependence of the disturbance as ψ′ = ψ̂(x, y)eλt, ω′ = ω̂(x, y)eλt, we arrive at a linealized
disturbance equation:

λω̂ =
1
Re

Mω̂ + N (ψ̂, ω̄) + N (ψ̄, ω̂), (7)

which is solved together with the Poisson equation for the disturbance:

ω̂ = −Mψ̂. (8)

Here, the coefficient λ is a complex linear growth rate of the disturbance, whose real and
imaginary parts λr and λi, show the growth rate and the frequency (angular velocity) of the
disturbance, respectively. The steady symmetric flow is unstable if λr is positive, or stable if λr

is negative. Hence, the Reynolds number where λr = 0 gives the critical value Rec.
The boundary condition for (ψ̂, ω̂) on the upstream and side boundaries is given as (ψ̂, ω̂) =

(0, 0). The outlet condition on the downstream boundary is the Sommerfeld radiation condition.
The non-slip boundary condition is applied on the surface of each circular cylinder.



Figure 2. Computational grid. Γ = 1.5
.

5. Numerical method
We utilize two different numerical methods, one of which is numerical simulation of basic
equations (1) and (2) under the boundary conditions and an appropriate initial condition and
the other the linear stability analysis of the steady symmetric flow. In both the numerical
calculation, the numerical domain is defined as L1 = 5d, L2 = 20d and L3 = �/2 + 9d, which
must be large enough not to affect the results (see Fig. 1). A curvilinear numerical grid is
generated to fit the circular cylinders, for which Poisson equations are solved and the technique
proposed by Steger and Sorenson is used in order to cluster grid points near the surfaces of
cylinders[6]. An example of the grid thus generated is shown in Fig. 2 for Γ = 1.5, whose total
number of mesh points is 299 × 310; the minimum mesh size is 0.01d near the surfaces of the
cylinders and the maximum size is 0.1d near the outlet and side boundaries.

In numerical simulation of dynamical equation (1), we use the forth–order Runge–Kutta
method to approximate the time integration together with the second–order accuracy of central
finite difference in space. Poisson equation (2) is solved by the successive over relaxation (SOR)
method, in which the relaxation factor is mostly taken as ε = 1.5, although other values are also
taken depending on the value of the Reynolds number and the gap ratio.

The SOR iterative method is utilized in order to obtain the steady–state solution (the main
flow) and also to solve the eigenvalue problem in the linear stability analysis. The steady–
state solution is obtained numerically by solving Eqs. (3) and (4) under boundary conditions,
where the spatial derivatives are approximated by the second–order finite differences. The
antisymmetry of (ψ̄, ω̄) with respect to the x-axis, i.e. ψ̄(x,−y) = −ψ̄(x, y) and ω̄(x,−y) =
−ω̄(x, y), is taken into consideration in calculating the steady–state solutions in order to save
computational time. In the SOR iterative method to solve the eigenvalue problem in the linear
stability analysis, the spatial derivatives are approximated by the second–order finite differences.
Here, it is added that the eigenfunctions (ψ̂, ω̂) of the most growing mode has the symmetry
ψ̂(x,−y) = ψ̂(x, y) and ω̂(x,−y) = ω̂(x, y), which can be utilized in numerical calculation.

6. Numerical results
Our numerical simulation was performed in the range of Re ≤ 100 and 0.3 ≤ Γ ≤ 5.0, and
showed that the flow pattern is categorized into six kinds of flow, i.e. a steady symmetric flow,
anti–phase and in–phase oscillatory flows, an oscillatory flow, a deflected oscillatory flow, and a
steady asymmetric flow, each of which is depicted in Figs. 3 (a)– 3 (f), respectively. The steady
symmetric flow is uniquely realized at Reynolds numbers smaller than a critical Reynolds value
Rec, which is determined depending on Γ .

The first instability is caused by oscillatory disturbances when the gap ratio is very small.
For example, we show two flow fields for Γ = 0.5 at Re = 40 and 50 in Figs. 3(a) and 3(b),
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Figure 3. Flow pattern. (a) Steady symmetric flow. Γ = 0.5, Re = 40. (b) Oscillatory flow.
Γ = 0.5, Re = 50. (c) Deflected oscillatory flow. Γ = 0.5, Re = 60. (d) Steady asymmetric
flow. Γ = 0.6, Re = 57. (e) In-phase synchronously oscillating flow. Γ = 0.62, Re = 55. (f)
Deflected oscillatory flow. Γ = 0.62, Re = 60.
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Figure 4. Bifurcation diagram. Γ = 0.5. (a) Hopf bifurcation. (b) Pitchfork bifurcation.

respectively. The flow is steady and symmetric at Re = 40 (Fig. 3 (a)), but oscillatory at
Re = 50 (Fig. 3(b)). Oscillation in the flow is observed in significantly apart places behind the
two cylinders. In order to analyze the transition, we take the amplitude of oscillation of velocity
v2 in the y-direction at the point P2 in Fig. 1 and draw a bifurcation diagram. The bifurcation
diagram thus obtained is shown in Fig. 4(a), where the amplitude (maximum and minimum
values, v2 and v2, in oscillation) of v2 in periodic oscillation is depicted against Re. From the
relation of |v2 − v2| ∝ (Re − Rec)1/2, the bifurcation is judged to be a Hopf bifurcation with
Rec = 40.1. We confirmed a deflected oscillatory flow at Re = 60 that was found by Kang[5]
as shown in Fig. 3(c). In this figure, the deflection is observed just behind the gap between the
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Figure 5. Bifurcation diagram. Pitchfork bifurcation. Γ = 0.6.

two cylinders, whereas the oscillation occurs far downstream from the cylinders as in Fig. 3(b).
In order to examine the flow deflection, we take the velocity v1 in the y-direction at the point
P1 in Fig. 1, which lies nearer downstream of cylinders than P2. From the bifurcation diagram
shown in Fig. 4(b), a pitchfork bifurcation is confirmed with the critical Reynolds number
Rec = 54.6. It is strange that the pitchfork bifurcation occurs at larger Reynolds number than
the critical value for the Hopf bifurcation. We conclude that the two different bifurcations occur
in separate distinct regions in the whole flow field, whose representative points are P1 and P2

for the pitchfork and Hopf bifurcations, respectively.
For a little larger gap ratio, Γ = 0.6, the flow experiences instability due to a stationary

disturbance first as the Reynolds number increases gradually and its bifurcation is a pitchfork
bifurcation with Rec = 55.1 as depicted in Fig. 5, which is drawn in the same manner to Fig. 4(b).
The resultant flow is a steady asymmetric flow (Fig. 3 (d)). We can see the asymmetry in the
wake of the two cylinders, which is an unexpected flow pattern because we usually expect
oscillatory flows for the flow past any symmetrically arranged obstacles.

The steady asymmetric flow do not occur for Γ = 0.62 in numerical simulation. The flow
becomes oscillatory first with gradual increase of the Reynolds number. A snapshot of the
oscillatory flow field at Re = 55 is depicted in Fig. 3(e), in which the wakes behind the cylinders
oscillate synchronously in the same phase and oscillation is observed immediately behind the
cylinders in contrast with Fig. 3(b) where oscillation occurs far downstream from the cylinders.
Taking the velocity v2 as in Fig. 4(a), we depicted a bifurcation diagram and identified it as a
Hopf bifurcation with Rec = 54.5. In addition, a pitchfork bifurcation is confirmed by numerical
calculation for the steady solutions and the critical Reynolds number is evaluated as Rec = 55.4.
It is noted that such steady flows are not realied in experiment or numerical simulation. However,
the influence of pitchfork bifurcation is clearly seen in the flow pattern at Re = 60 (Fig. 3 (f)),
where deflected oscillatory flow is observed. We show the flow field of the disturbance ψ̂ in
Figs. 6. It is confirmed that the flow field of disturbance at Re = 55 is symmetric with respect
to the-x axis (Fig. 6 (c)), but it is asymmetric at Re = 60 by the influence of the pitchfork
bifurcation (Fig. 6 (d)).

Comparing the flow field of disturbance for Γ = 0.6 (Re = 60, Fig. 6 (b)) with that for
Γ = 0.62 (Re = 60, Fig. 6 (d)), we can see that the disturbance for Γ = 0.6 has a significant
magnitude in a restricted region of the whole field, whereas the disturbance extends in the entire
flow field for Γ = 0.62. Hence, we conclude that the two modes of disturbance are different and
the most unstable disturbance changes from one mode to the other in a very narrow range
0.6 < Γ < 0.62.

We show the transition diagram in Fig. 7, which is drawn compiling the numerical results
for 0.3 ≤ Γ ≤ 1.0, where the critical Reynolds number for the Hopf bifurcation is indicated by
dashed lines with filled circles and the pitchfork bifurcation by solid line with open circles. From
this figure, it is seen that the flow can be classified by the first instability into three categories.
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Figure 6. Flow pattern of disturbance. (a) Γ = 0.5, Re = 50, (b) Γ = 0.6, Re = 60. (c)
Γ = 0.62, Re = 55. (d) Γ = 0.62, Re = 60.

For Γ < 0.58, the flow is unstable to an oscillatory disturbance to yield oscillation in a restricted
region far downstream and then becomes a deflected oscillatory flow at large Reynolds numbers.
For 0.58 < Γ < 0.62, a steady asymmetric flow is realized above a critical Reynolds number and
then a deflected oscillatory flow appears. For 0.62 < Γ < 1.0, the flow oscillates in the entire
flow field and becomes a deflected oscillatory flow. It is added that there are two different modes
of synchronous oscillation in the flow, one of which is oscillation in the same phase observed in
the present paper (Γ = 0.62) and the other is oscillation in the anti-phase. The exchange of the
two different synchronous oscillation modes in the flow past two circular cylinders was discussed
in our previous paper[7].
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Figure 7. Transition diagram. ◦: Pitchfork bifurcation, •: Hopf bifurcation.
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