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ABSTRACT 
In this work, we consider the spray drying of colloidal 
solutions, as applied to the case of the generation of 
synroc precursor powders. In this paper, a model of this 
process is formulated by considering the simplified 
situation of the evaporation of a pure liquid droplet 
suspended in a binary atmosphere consisting of the vapour 
phase of the liquid and an atmospheric gas such as air. 
Mass, momentum, and energy balances are given for the 
liquid and gas phases of the problem, and a binary 
diffusion equation is also given. The subsequent equation 
set is solved numerically, and the results are compared 
with experimental data, both of pure droplets, and of sol 
droplets. 

NOMENCLATURE 
C concentration 
Ĉ specific heat 
D mass diffusivity 
f external force 
H enthalpy 
M momentum transfer 
p pressure 
Q energy transfer 
r radial coordinate 
r̂  unit radial vector 
R droplet radius 
R  universal gas constant 
t time 
T temperature 
u  velocity 
U thermal energy 
w mass fraction 
x transformed spatial coordinate 
 
δ unit tensor 
κ  dimensionless parameter 
λ thermal diffusivity 
π  pressure tensor 
ρ  density 
σ  surface tension 

Subscripts 
a atmosphere 
E “east” node for computation 
g gas 
i either vapour (v) or atmosphere (a) 
j gas (g), vapour (v), or atmosphere (a) 
l liquid 
P constant pressure OR central node for computation 
v vapour 
V constant volume 

INTRODUCTION 
The production of the synthetic rock known as synroc 
(Sizgek, Bartlett and Brungs 1998), a substance used for 
encapsulating high level liquid nuclear waste, requires a 
number of stages. The first stage involves the preparation 
of a precursor Titanium, Zirconium, Aluminium (TZA) 
colloidal solution, or sol (Sizgek, et al. 1998). Once the 
TZA sol is prepared, it is injected into a spray drying 
chamber so that a fine TZA powder is produced. 
However, depending on the properties of the sol and the 
conditions of the chamber, the resulting powder can have 
different morphologies. The most desirable of these is a 
solid, porous sphere. Some examples of undesirable 
morphologies are hollow spheres and tori. The 
morphology of the powder can have a significant impact 
on the effectiveness of the downstream synroc product to 
encapsulate nuclear waste (Sizgek, et al. 1998). In this 
paper we present and validate an initial model for the 
spray drying process in which we consider a liquid droplet 
evaporating in an atmosphere consisting of its own vapour 
and an inert atmospheric gas such as air or argon. 
We consider the spray drying process for sols to consist of 
four distinct phases. First, the atomised colloidal solution 
is released into the drying chamber, during which rapid 
transient behaviour occurs. Following this transient 
period, the droplets evaporate until colloid at the surface 
solidifies to form a crust. Next, liquid is evaporated 
through the pores of the crust; this causes the crust to 
thicken. Finally, when all of the colloid particles have 
solidified, the remaining water is evaporated off through 
heating until the powder exits the drying chamber. 
From a simplified perspective, the spray drying process 
can be considered to be the process of the evaporation of a 
single droplet in an infinite atmosphere under the action of 
gravity. A further simplification involves neglecting 
gravity and the assumption of a stagnant atmosphere. This 
results in a model of the process that is radially 
symmetric, thereby permitting a one-dimensional analysis. 
A number of simplified models of spray drying have been 
considered in the literature. Sirignano (1999) considers the 
process as it applies to fuel combustion. He formulates 
quite complex models of the process; however, certain 
important concepts in fluids and evaporation, such as 
surface tension and vapour pressure, are not considered. 
This may be an acceptable approach for combustion 
models, but for inert drying, this is not valid. Van der Lijn 
(1976) models the spray drying of liquid foodstuffs (such 
as milk). In doing so, however, he makes numerous 
simplifications, such as neglecting the thermal 
distributions in the droplet. Sano and Keey (1982) attempt 
to model the formation of hollow sphere morphologies 
during the spray drying of sol droplets. However, they 
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make the a priori assumption that a bubble will form 
inside the droplet, yet they do not provide proof that this is 
the mechanism by which hollow spheres are formed. 
Oberman, Farrell and Sizgek (2005) developed a model 
that considered the evaporation of a liquid droplet in its 
own, pure atmosphere. The primary purpose of 
constructing the model was to create a numerical 
framework that could be adapted for more complex 
models. The most notable use for such a framework is for 
the contemplation and testing of methods by which the 
moving boundary between the liquid and gas phases can 
be managed numerically. Oberman et al. assumed that the 
liquid phase is incompressible and pure, that the gas phase 
is ideal, inviscid, and infinite, and that it is the vapour 
form of the liquid phase. It is also assumed that there are 
no external forces such as gravity and that both phases are 
initially in internal equilibrium. In addition, the system is 
assumed to be spherically symmetric, and the gas phase is 
assumed to be far less dense than the liquid phase. A 
regular perturbation analysis was carried out on the model 
equations and this led to the assumption that the vapour 
phase is isobaric. Boundary fixing transformations were 
applied to the liquid and gas phases of the problem and the 
resulting model equations were solved numerically using 
control volume (Patankar 1980) discretisation methods. 
The model simulations were found to agree favourably 
with the well-known “d2-law” (Nomura, Ujiie, Rath, Sato 
and Kono 1996); however, due to a lack of relevant 
experimental data, Oberman et al. do not validate their 
results. 
In this paper, we adopt an approach similar to that of our 
previous work (Oberman, et al. 2005) in that we again 
consider a single droplet, containing homogeneous liquid, 
but not colloid, that is being dried in a quiescent, inert 
atmosphere. Unlike the previous work, however, we now 
consider this atmosphere to be binary in nature; that is, it 
consists of an inert atmospheric gas and the vapour phase 
of the liquid. This model will therefore capture the 
essence of the first two stages in the drying process 
described above. The purpose of this model is to construct 
a system of equations for the gas phase that will then be 
implemented in a more complex model involving colloidal 
behaviour. It also permits the confirmation of the model 
design by comparison with experimental data, and the 
results of such a validation process are included here. 

MODEL DEVELOPMENT 
The following simplifying assumptions will be applied to 
this model: 
1. The liquid phase is incompressible and pure. 
2. The gas phase is an ideal mixture of atmospheric gas 
and vapour, each of which is ideal, inviscid, and infinite. 
3. There are no outside forces acting upon the system. 
4. The entire system is spherically symmetric. 
5. The gas phase has significantly lower density than the 
liquid phase. 
6. Initially, each phase is in internal equilibrium. 
7. The atmospheric gas does not dissolve into the liquid 
phase. 
Each assumption has a basis in logic; Assumptions 1, 3, 
and 6 are due to the physical setup of the model, 
Assumptions 2, 4, and 7 simplify the system without 
oversimplifying the underlying physics, and Assumption 5 
is essential for realistic thermodynamic behaviour, 
although it is often not explicitly stated. 

As a result of the above assumptions, the following model 
equations can be formulated. We note that unless 
otherwise stated, all quantities introduced in the following 
equations are dimensionless. 

Inside the droplet 
Within the droplet, the behaviour of the liquid essentially 
remains the same as in our earlier model. Although 
equations for mass, momentum, and energy balance may 
be derived for the liquid phase, the mass and momentum 
equations can be reduced via Assumption 1. This 
reduction leads to the conclusion that the radial velocity of 
the liquid is zero, and also that the pressure is independent 
of position within the liquid. 
The remaining equation, namely the energy balance 
equation, takes the form (Bird, Stewart and Lightfoot 
1960) 

21
2=l lT Tr

t r r r
κ∂ ∂∂ ⎛ ⎞

⎜ ⎟∂ ∂ ∂⎝ ⎠
.         (1) 

 
We consider that the initial temperature of the droplet is 
uniform and is given as 1lT = . Furthermore, at the centre 
of the droplet, symmetry requires that  

= 0 .lT
r

∂
∂

          (2) 

Outside the Droplet 
The gas phase of the binary gas model consists of two 
subphases, namely the vapour (v) and atmosphere (a) 
subphases. The vapour subphase consists of vaporised 
liquid, while the atmosphere subphase consists of those 
gases not in the vapour subphase. 
Noting Assumption 2 we may assert that, in the gas phase, 
pressure is additive, giving  

= .g v ap p p+         (3) 

In addition, for each of these the ideal gas law applies, 
namely (Roberts 1994),  

= .j jp C RT          (4) 

Noting Assumption 2, the continuity equation takes the 
form (Bird, et al. 1960), 
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where the velocity scaling has been chosen to set the 
dimensionless parameter in this equation to 1. In order for 
this equation to be satisfied for both the gas phase and its 
subphases, it is necessary to define the velocity of the gas 
to be the mass average velocity (Bird, et al. 1960), 
namely,  

= .g g v v a au u uρ ρ ρ+         (6) 

Alternatively, using the mass fractions, = /v vw gρ ρ , and 

= 1aw vw− , we may write Equation (6) as  

= .g v v a au w u w u+         (7) 

Additionally, we may write the subphase velocities in 
terms of the mass average velocity and subphase mass 
fractions, namely (Bird, et al. 1960), 
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i i i g g

wu u
r

ρ ρ κ ρ ∂
−

∂
         (8) 

The first term on the right of this expression represents an 
advective flux and the second term represents the mass 
flux associated with Fickian diffusion. 
The momentum balance equations for each subphase 
(v or a) can be written, in dimensioned form, as (Bird, et 
al. 1960) 
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Summing this equation over both subphases and applying 
Equation (6) and Assumption 3 gives  
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g g
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u
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where v aM M+  is zero because it represents momentum 
transfer from one subphase to the other, which, of course, 
must be conserved. In addition, gπ  can be reduced, using 

Assumption 2, to the form gp− δ . This allows Equation 
(10) to be written as,  
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In turn, Equation (11) can be simplified, and using 
Equations (3), (6), and (8) and the definition of material 
derivative (Roberts 1994) to arrive at the final form of the 
gas phase momentum balance equation, which upon the 
introduction of dimensionless variables is given by, 
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The total energy balance equations for each subphase can 
be written, in dimensioned form, as (Bird, et al. 1960)  
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Introducing the enthalpy, = /i i iH U p ρ+ (Bird, et al. 
1960), and simplifying, we obtain that  
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Summing across the subphases, we have 
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where energy conservation requires that . 
Letting 

= 0v aQ Q+
=v v a a g gH H Hρ ρ ρ+  and applying equation (8) 

yields, 
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where K  is given by, 
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Noting that ˆ= PH C T , = /H U p ρ+ , and , and 
introducing dimensionless parameters, we may write the 
above total energy equation in terms of the specific heats, 
namely, 

ˆ= VU C T
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Initially, the density of the gas phase is uniformly 1gρ = , 

the radial velocity is uniformly , the temperature is 

uniformly 

0gu =

1T = , and the mass fraction is uniformly 
0v vw w=  (a constant). At large distances from the droplet, 

gρ , , and T  remain at these constant values. vw
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Equations (5), (12), and (18), along with Equation (8) and 
the boundary conditions described above, govern the 
variables gρ , , vw gu , and T  outside the liquid droplet. 

On the Surface of the Droplet 
The following equations apply only at the surface, 

, of the liquid droplet. Together they form a set 
of conditions that describe the conservation of mass, 
momentum and energy at the moving boundary between 
the liquid and gas as the radius of the droplet decreases 
due to evaporation (or increases due to condensation). 

= ( )r R t

The liquid and gas phases are in thermal contact at the 
surface, and therefore continuity of temperature applies 
(Margerit and Sero-Guillaume 1996), namely,  

9= lT Tκ            (19) 
at the surface of the droplet, where the dimensionless 
parameter  appears due to the different 
nondimensionalisations applied to the two temperatures. 

9κ

All thermal energy conducted into the droplet from the gas 
is used for either sensible heating of the droplet or to 
supply latent heat energy to the liquid being evaporated. 
As such, the heat flux surface condition can be formulated 
as (Delhaye 1981) 

10 11= lTT .R
r r

λ κ κ∂∂
−

∂ ∂
&         (20) 

All mass evaporated from the liquid phase must 
necessarily enter the vapour subphase. Thus the 
conservation of mass flux at the interface yields (Delhaye 
1981), 

2( ) =v
v g g

wu R R
r

ρ κ ρ ∂
− − −

∂
&

12 .κ &         (21) 

Noting Assumption 7, the mass flux of atmosphere across 
the interface must be zero, and so, noting that = 1a vw w− , 
we obtain (Delhaye 1981) 

2(1 )( ) = 0 .v
v g

ww u R
r

κ ∂
− − +

∂
&        (22) 

The pressure at the surface of the droplet is found by 
generalising the Clapeyron equation to unequal pressures. 
This gives (Lock 1994) 

1312 =l v

v

dp dp dT
dt dt T dt

κκ
ρ

− − .          (23) 

The difference between the gas and liquid pressures can 
be derived by considering a balance of forces, namely 
(Delhaye 1981), 

14
15= .g lp p RuvR

κ κ− + &        (24) 

Summary 
Equation (1) with the boundary condition in Equation (2), 
Equation (5) with Equation (8), Equations (12) and (18), 
the related initial and infinity conditions, plus, at the 
interface, and Equations (19) through (24), form a 
complete system of equations describing the evaporation 
(or condensation) of a liquid droplet suspended in a binary 
atmosphere consisting of an ideal mixture of pure vapour 
and pure atmospheric gas. 
 

Analysis 
Of the dimensionless parameters introduced above, four 
are significant in terms of analysing the system of model 
equations. These are, 
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If we set 2κ  equal to one, then the time scale of the 
nondimensionalisation is that of the process of diffusion of 
water vapour into air. On this time scale,  is found to be 
exceptionally large, indicating rapid propagation of 
pressure. This fact and consideration of boundary 
conditions reveals that the pressure of the system can be 
considered isobaric. However, assumption of isobaric 
conditions leads to a numerically unstable system, and this 
result therefore is not used to simplify our system of 
equations. The parameter 

3κ

4κ  represents the proportion of 
the energy attributable to the process of diffusion. It is 
negligible, and is taken to be zero in our equation system. 
Finally, 14κ  represents the ratio of the surface tension and 
surface pressure. This is also found to be negligible, and is 
subsequently set to zero in our system. 

NUMERICS 
In order to solve the above system numerically, it is first 
necessary to decide upon a mesh scheme. The simplest 
method of handling the changing boundary is to lock the 
surface at 1x =  by scaling the spatial coordinate within 
the droplet using ( )r xR t= , and by translating the spatial 
coordinate in the gas phase using  
(Oberman, et al. 2005). Once this is done, a simple linear 
mesh is applied to the system. 

( ) 1r x R t= + −

 
The form of the equations seen above is conducive to the 
application of a Control Volume Scheme (Patankar 1980), 
with the exception of the 3κ  term in the momentum 
equation (Equation (12)). During discretisation, we find an 
integral of the form 

2( ( ))E

P

x

x

p ,x R t dx
x
∂

+
∂∫  

which, after applying the product rule and using an 
inverse-linear fit for p gives 

( ).E P E Pr r p p−  
 

In addition, we apply upwinding (Patankar 1980) to the 
advective terms and note that the velocity used for 
upwinding is that relative to the mesh, which takes the 
form, gu R− & . 
Once the equations are discretised, we obtain a system of 
nonlinear difference equations. In order to solve this 
system, we apply a fully-implicit iterative Newton method 
(Burden and Faires 1997), alternately solving within and 
without the droplet, and repeating until convergence for 
each time step is achieved. A computer code 
implementing this numerical scheme has been written in 
MATLAB. 
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RESULTS & DISCUSSION 
This system differs from the previous homogeneous model 
of Oberman et al. (2005) due to the inclusion of a second, 
atmospheric gas within the gas phase. To see the effect of 
this, we compare the results of the code under a variety of 
conditions within the gas phase. 
 

 
Figure 1: Comparison of droplet drying curves for 
varying humidity. 
 
Figure 1 displays a comparison of the model for a droplet 
of radius 1 mm in an atmosphere at 28ºC and 101.3 kPa. It 
can be seen that the homogeneous model (100% water 
vapour) predicts strong condensation due to the 
temperature being significantly below the dew point, 
while under very dry conditions (0.1% water vapour), 
where the gas phase has a very low mass fraction of water 
vapour, it is seen that evaporation occurs quite rapidly. 
Under more realistic conditions (0.5% water vapour), the 
gas phase temperature is only slightly above the dew point 
temperature and we see that evaporation is slow. 
By examining the pressure distribution obtained 
numerically, we find that, on the time scale of 
evaporation, gp  only deviates by 10-7% from its initial 
value, indicating without doubt that the gas pressure can 
be considered isobaric. This is found to be true even under 
extreme conditions, where the initial temperatures are 
greater than the boiling point of water and the atmosphere 
is almost completely dry. This outcome is consistent with 
our previous observation concerning the parameter 3κ . 
 
 

A
irf
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w

 

 
Figure 2: Experimental design imperfections. 
 
In order to validate the results of this model, a number of 
experiments were performed. These experiments involved 
the evaporation of a droplet suspended on the end of a 
platinum wire (see Figure 2), which was then inserted into 
a thermogravimetry device. For the duration of the 
evaporation, the mass of the droplet was recorded. On the 
left side of Figure 2, we see a representation of a droplet at 
early times; it can be seen that the droplet is only slightly 
affected by the presence of the platinum wire. On the right 

side of Figure 2, we see that the droplet radius is no longer 
large compared to the thickness of the wire, and this 
artificially increases the surface area of the droplet. 
 

 
Figure 3: Comparison of experiment (—) and theory (- -) 
for pure water droplets. 
 
Figure 3 compares the experimental evaporation data for 
two pure water droplets of different initial radii with the 
numerical predictions. It can be seen that, in both cases, 
the numerics predict a slower evaporation rate at later 
times than is seen in the experiments. This can be 
attributed to three factors: the surface area of the droplet is 
artificially increased by the presence of the platinum wire; 
there is forced airflow within the apparatus, which reduces 
the humidity of the air; and there is increased heat transfer 
through the platinum wire. These three issues are not 
accounted for by the model. 
Figure 4 compares the experimental evaporation data 
(solid lines) for water droplets of different initial radii 
containing colloidal materials with the corresponding 
numerical simulations (dashed lines) of our model. We 
note that even though our model does not account for the 
presence of colloidal material in droplets, the model 
adequately predicts behaviour for early times, when the 
droplet still behaves similarly to a pure water droplet. At 
late times, the experimentally observed evaporation curves 
show a change in concavity due to the coagulation of 
colloid particles. Note that the spike in the experimental 
data at approximately 200s was an artefact of the 
measuring apparatus used. 
 

 
Figure 4: Comparison of experiment (—) and theory (- -) 
for sol droplets. 
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CONCLUSION 
A model of the evaporation of a pure liquid droplet 
suspended in a binary atmosphere has been developed. A 
numerical scheme has been developed to solve this 
system, and the scheme was implemented as a MATLAB 
code. The results of the code were compared to 
experimental data for various droplet radii, and they were 
found to favourably agree. Comparison with experimental 
data for the drying of sol droplets demonstrated further 
agreement, indicating that such a model is accurate for the 
first two stages of spray drying of synroc precursor sols, 
during the early stages when the colloidal material has yet 
to coagulate to any appreciable degree. 
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