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ABSTRACT 
This paper presents the results of a numerical 

calculation on the near-field behavior of three-dimensional 
(3-D) line inclined positively buoyant jets of slot with 
width B and length 4L B= , discharge into relatively deep 
uniform cross flows at angle of 60° to the horizontal. The 
R , which is the ratio of ambient velocity to jet exit 
velocity, is varied from 0.2 to 0.6 and influences specific 
properties of the flow. The calculations are performed with 
the standard  model and the Hybrid Finite Analytic 
Method (HFAM) and staggered grid. The phenomenon and 
development of vortex pairs are simulated successfully and 
influence of 

κ ε−

R  on turbulent buoyant jets is analysed.    

NOMENCLATURE 
B   width of slot  
Cμ , 1Cε , 2Cε , kσ , εσ   constants in  model κ ε−
E   roughness parameter 

jF   discharge densimetric Froude number 

ig   gravitational acceleration 
h , ,   distances between two grid points in  k l x , 

,  direction.  y z
K  von Karman constant 
L   length of slot  
P   intensity of pressure 

kP   production of the turbulent kinetic energy 

rtp  turbulent Prandtal number 
R   ratio of ambient ambient velocity to jet exit velocity 
T   temperature of jets 

0T   jet exit temperature 

aT   temperature of uniform cross flows 
u ,υ ,  three- dimensional velocities w

iu   mean velocity component in ix  direction 

iu′   fluctuating velocity component in ix  direction 

au   velocity of uniform cross flows 

pu   resultant velocity parallel to the wall 

*u  resultant friction velocity 

0W   jet exit velocity 
X, Y, Z  Cartesian coodinate system with Z upword 

ix   co-ordinates in tensor notation 

py  distance between the first grid and wall 

y+  dimensionless wall distance 

α   heat expansion coefficient 

ijδ   Kronecker delta, =1 for  andd =0 for i j= i j≠  
ε   dissipation rate of κ  
θ   jet exit velocity angle relative to horizontal 
ν   kinematic viscosity 

tν   teddy viscosity 

aρ   ambient fluid density 
κ   turbulent kinetic energy 

INTRODUCTION 
With the development of human society, environment 

has become an urgent issue in the world. If jets through 
finite-length slot or multiport diffuser that is frequently 
designed with nozzles spaced so closely discharge effluent 
coming from industry or agriculture into moving flows, this 
kind of jets can be generalized as line turbulent buoyant jets 
in moving flows. Generally, if θ  (the jet exit velocity 
angle relative to horizontal) equals 90°, the jet is called line 
perpendicular turbulent buoyant jets in moving flows; if θ  
equals 0°, the jet is called line horizontal turbulent buoyant 
jets in moving flows; if θ  doesn’t equal 90° and 0°, the 
jet is called line inclined turbulent buoyant jets in moving 
flows(HU and HAN, 2004). Water quality standards 
require high dilutions within a limited mixing zone (JIRKA, 
1982), and the purpose of this strategy of environmental 
conservation is to constrain the impact of heated discharges 
to a small area. Finite length line inclined positively 
buoyant jets in uniform cross flows is a basic flow shape of 
environmental pollution. The dilution effect of it is superior 
to perpendicular jets for smaller R  and lower cross flows 
(HU and HAN, 2004). Therefore, numerical simulation on 
it can provide theoretical basis to design discharge-into-sea 
diffusers, which is of great theoretical value and practical 
meaning. 

MATHEMATICAL MODEL 
The configuration considered in this study is described 

in Figure 1. The thermal jets for temperature is  and 

velocity is  is discharged into a relatively deep uniform 

cross flow which of temperature is  and velocity is 

from a slot with width 

0T

0W

aT

au B  and length L  at angle of 

60 to the horizontal ( ). The standard 0 aT T> κ ε−  
turbulent model, staggered grid and Hybrid Finite Analytic 
Method (LI, 2000) are adopted in the present study. 
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Governing Equations 
The basic equations are 
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where  is equal ,  or , which are mean velocity 
components in 

iu u v w
x , ,  directions respectively,  is 

the intensity of pressure, 

y z P

aρ  is the ambient fluid density, 

ν  is the kinematic viscosity, i ju u′ ′−  is the Reynolds 

stress, iuϕ′−  is the Reynolds diffusivity of heat,  is the 
temperature of jets,  is the turbulent kinetic energy, and 

T
k

ε  is the dissipation rate of the turbulent kinetic energy. 
According to the Boussinesq eddy-viscosity concept that 
assumes that in analogy to the viscous stress in laminar 
flows, the turbulent stresses are proportional to the 
mean-velocity gradients, so the Reynolds stress and the 
Reynolds diffusivity of heat may be expressed as 
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where tν  is the eddy viscosity, and v C 2 /t kμ ε= , rtp  

is the turbulent Prandtl number, and it is a constant.  is 
the production of the turbulent kinetic energy and is 
defined in the following expression: 

kP

Figure 1: Diagram of finite length line inclined 
positively buoyant jets 
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The constants of the k ε−  model are 
0.09Cμ = , , , 1 1.44Cε = 2 1.92Cε =

1.0kσ = , , . 1.3εσ = 1.0rtp =

Boundary Conditions 

1) Entry boundaries ( 2X B= − ) 
au u= , 0wυ = = , , aT T=

20.06a ak u= , , 30.06 /a au Bε =
where B  is the width of diffuser. 

2) Exit boundaries (its range changes with changing of 
length of diffuser) 

[ , , , , , ] 0u w T k
x

υ ε∂
=

∂
. 

3) Symmetry plane ( 0y = ) 

0υ = , [ , , , , ] 0u w T k
y

ε∂
=

∂
. 

4) Side boundaries (its range changes with changing of 
length of diffuser) 

0wυ = = , [ , , , ] 0u T k
y

ε∂
=

∂
. 

5) Top boundaries (its range changes with changing of 
length of diffuser) 

0wυ = = , [ , , , ] 0u T k
z

ε∂
=

∂
. 

6) Exit of buoyant jets boundaries (－B/2≤X≤B/2) 

0
1
2

u w= , 0υ = , 0
3

2
w w= , 

0T T= , ,  2
0 00.06k w= 3

00.06 /w Bε =
7) Bottom boundaries( ) 0Z =
The universal law of the wall is used and may be 

expressed as 

*/ [ln( )]/ ,p pu u y E K v+ 0= = ,        (9) 

where pu  is the resultant velocity parallel to the wall,  

is the resultant friction velocity,  is the 

dimensionless wall distance,  is the von Karman 
constant, 

*u

* /py y u+ = v
K

py  is the distance between the first grid and 

wall, and  is a roughness parameter (E 9.0E =  for 
hydraulically smooth walls). This law should be applied to 
a point whose y+ -value is in the range . 
It is then sufficiently accurate in most situations. The areas 
near separation and stagnation points are exceptions, but 
they are usually small and exert little overall influence on 
the flow.  

11.6 100y+< <

In the y+ -region specified above, the turbulent kinetic 
energy  and the rate of dissipation k ε  may be 
expressed as  

2 3
* */ , /(p pk u c u Kyμ ε= = )p .       (10) 
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Mathematical Model 
The above mathematical model can be generally 

expressed as a uniform form 
2 2 2x y z xx yy zzA B C GΦ + Φ + Φ = Φ +Φ +Φ + . (11) 

Equation (11) is nonlinear, and for a grid unit, it may be 
linearized as follows: 
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where  and n  express the calculated values when 
the circulating number is  and . 

n 1
n 1n +

In the part grid, equation (12) is reduced through the 
Hybrid Finite Analytic Method to 
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where ,  and  are respectively the distances 
between two grid points in  

h k l
x , ,  direction.  y z

ANALYSIS OF RESULT 
The five cases have been calculated for , 72.2jF =

4L B=  and R  varying from 0.2 to 0.6, in which jF  is 
the discharge densimetric Froude number 
( 2

0 0/[( ) ]j a aF T W T T gB= − ), L  is length of slot, B  is the 

slot width and R  is the ratio ambient velocity to jet exit 
velocity. 

Flow Behavior 
Figure 2 shows the velocity vectogram of symmetry 

plane for . Figure 2 shows the essential features of 
the jets are fully three-dimensional and it is difficult to 
visualize. The most striking feature is the transition from an 
initially inclined jet through a bending phase during which 
the buoyant jet becomes approximately parallel with the 
free stream. There is some slight acceleration of the flow in 
the bending over region because of the wake effect of the 
slowing-moving fluid entrained in the lee of the jet. The 
smaller the value of 

0.2R =

R  is, the more easily a vortex is 
formed. Because of the continuity of stream, the ambient 
flows on each side of the centerline must meet at some 
point downstream and the flow spreads upward like a 
source. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A Vortex Pair to be Formed 
On the basis of finite length line perpendicular buoyant 

jets in cross flows, a vortex pair aligned with the flow has 
been revealed (HAN and LI, 2000). For the finite length 
line inclined buoyant jets in a crossflow, the authors 
calculate five cases with the R  varying from 0.2 to 0.6. 
The contour of temperature T  at / 1X B 2= , 

/ 2X B 4= , / 2X B 8=  (Figure 3, Figure 4, Figure 5, 
Figure 6 and Figure 7)show a vortex pair is also formed 
when R  is smaller than 0.5, and it is not formed when R  
is larger than 0.5. The reason for it is that, smaller R  can 
increase the force that the ambient flows on each side of 
centerline of diffuser flow to the plane of symmetry and the 
force that jet entrains environmental fluid, which cause to 
be formed a vortex pair easily. The distance between center 
of vortex and 0x =  decreases, the distance between 
center of vortex and the plane of symmetry increases, and 
the height of center of vortex increases, with decreasing of 
R . When the R  is a constant, the distance between center 
of vortex and the plane of symmetry will finally keep a 
constant, while the height of center of vortex will slightly 
increases because of the buoyant. Figure 7 indicates a 
kidney shape is formed. This is because jet for larger R  
discharging from jet exit is bending so fast that the force 
entraining environmental fluid is too small to form a 
vortex. From Figure 3 to Figure 7, we can see that the 
distance between center of vortex and plane of symmetry is 
related to R . The relational graph between them is showed 
in Figure 8, and the relational expression is 

1.31/ 0.5Y B R−= .            (14) 

 A Flowing Structure of Horsehoof Shape  

The contour of temperature T  at /Z B 3=  for 
0.2R =  is shown in Figure 9. Figure 9 shows that the 

ambient flows on each side of the centerline flow to the 
plane of symmetry and form a hoof shape in the lee of the 
jet, this is the mechanism that the cross flow is blocked by 
the jet. 

CONCLUSIONS 
The numerical solutions here for the finite length line 

inclined positively jets in cross flows have provided insight 
into the dynamics of this three-dimensional flow. The 
simulations reveal a vortex pair aligned with the flow what 
is related to R . For smaller values of R , the vortex pair 
can be easily formed. For , the vortex pair cannot 0.5R >

Figure 2: Velocity vectogram of symmetry plane for 
0.2R =  

X/B 

Z/
B
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be formed. The model predicts that the position of center of 
vortex is related to R . The relational expression on the 
distance between center of vortex and the plane of 
symmetry and R  is given. 
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Figure 3: Temperature contours at different planes which parallel with 0x  and 0.2R =  =
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Figure 4: Temperature contours at different planes which parallel with 0x =  and 0.3R =  
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Figure 5  Temperature contours at different planes which parallel with 0x: =  and 0.4R =  
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Figure 7: Temperature contours at different planes which parallel with 0x =  and 0.6R =  
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