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ABSTRACT

Direct Numerical Simulations with a Front Tracking model
have been used to study the hydrodynamic behavior of bub-
ble swarms for the air/water system. In this work, we focus
on the effect of the presence of neighboring bubbles on the
drag as a function of the void fraction, especially at higher
void fractions. Mimicking bubble swarms with a relatively
small number of bubbles in a periodic domain, the number
of bubbles was varied while keeping the overall void frac-
tion constant. We have observed a strong hindered rise ef-
fect, while bubbles tend to arrange themselves in horizontal
clusters. The observed minimum in the drag coefficient as
a function of the number of bubbles at a fixed void fraction
was related to the maximum number of bubbles that can co-
ordinate themselves in a horizontal plane.
The normalized drag coefficient increases for higher void
fractions (i.e. hindered rise). Again, significant effects of
horizontal bubble clustering on the drag coefficient were
found and explained.

NOMENCLATURE

See also Table 1 or text near the relevant equations.
A Projected surface area
CD Drag coefficient
E Aspect ratio
FB Buoyancy force
FD Drag force
Fσ Surface tension force
g Gravitational constant
L Length of computational domain
nmax Max. number of bubbles in a plane
n Normal vector
p Pressure
S Surface area
tma Tangent between markers m and a
vz Bubble rise velocity
V Volume
u Velocity vector
τ Stress tensor
σ Surface tension coefficient
φ Packing density

Subscripts
c Continuous (liquid) phase
d Dispersed (bubble) phase
glob Global
rel Relative
z Vertical direction
∞ Single bubble in an infinite liquid

INTRODUCTION

Bubble columns are frequently applied in the metallurgi-
cal and (bio)chemical process industries as an efficient gas-
liquid contacting device. In reactive systems, the contact
area between the gas and liquid phases is of major impor-
tance for efficient process operation, while in mixing ap-
plications (e.g. the stirring of liquid steel by means of gas
bubbles) the overall hydrodynamic flow pattern is of spe-
cific interest. The modelling of bubble columns requires
CFD simulations, using real process length scales to cover
the entire bubble column unit. Of course, these large scale
models cannot resolve the smallest details of the flow, but
can provide important information on the macroscopic cir-
culation patterns and void fraction profiles in relatively short
calculation times, provided that the details of the interaction
between the phases is modelled with accurate closure corre-
lations. Deriving such correlations with more detailed types
of models that can capture these specific, detailed phenom-
ena is what we refer to as a multi-level modelling approach
(a.o. Deen et al. , 2004).
The drag force is the most important force acting on bub-
bles in a bubble column, since it dominantly controls the
rise velocity of the bubbles through the liquid, determining
the gas phase residence time and driving the macroscopic
flow patterns. An accurate description of the drag coeffi-
cient CD as a function of the Reynolds number is essential
for Discrete Element Methods, which simulate bubbly flow
in an Euler-Lagrangian manner up to O(106) bubbles, or
Multi-Fluid Models that treat both phases as interpenetrat-
ing continua. It is therefore not surprising that numerous
drag force closures can be found in literature. A distinction
has to be made between closures that describe the drag coef-
ficient of single bubbles in an ’infinite’ quiescent liquid, e.g.
Tomiyama et al. (1998) and Mei et al. (1994), and other
relations describing the drag force on bubbles in a swarm,
e.g. Simonnet et al. (2007).

Bubble swarms

Drag correlations for bubble swarms can be derived from
simulations or experiments, and are mainly described as a
function of the Reynolds number Re, the Eötvös number Eo
and the void fraction (gas phase fraction) α. The effect of
the local void fraction on the drag coefficient is often ac-
counted for via a correction of the terminal rise velocity via:

vz = v∞ (1− α)n (1)

Where v∞ is the rise velocity of a single bubble in an infinite
liquid, and n is often called the Richardson-Zaki exponent
(Richardson & Zaki, 1954). A particular modification of this
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correlation, derived experimentally for gas-phase fractions
up to 50%, is that of Lockett & Kirkpatrick (1975) (Eq. 2).

Vrel = V∞ (1− αglob)
1.39 × (1 + 2.55αglob)

3 (2)

A further outline of existing correlations of this form has
been given in the work of Simonnet et al. (2007), who have
also measured the rise velocity of bubbles in a swarm exper-
imentally for the air/water system. They have found bubble
hindrance up to a void fraction of about 15% (increased drag
coefficient), whereas beyond a void fraction of 15%, the
bubbles showed cooperative rise (reduced drag compared to
a single bubble in an infinite liquid).
Results of direct numerical simulations of bubble swarms
have also been reported in the literature, for instance the
work of Bunner & Tryggvason (2002). They have com-
prehensively described their results of bubble swarm sim-
ulations using relatively large numbers of bubbles (up to
216 bubbles) with their Front Tracking model. However,
they concluded that the interactions between bubbles could
already be found using only 12 bubbles in a periodic do-
main, and found that bubbles tend to cluster horizontally
and vertically, the latter referred to as “acceleration, kiss-
ing and tumbling”. Bunner & Tryggvason (2002) simulated
bubble swarms using a density ratio ρd/ρc and viscosity ra-
tio µd/µc of 1/50 to avoid numerical instabilities, so that
their bubbles were mainly spherical or slightly ellipsoidal
shaped. These numerical problems, for example the high
density jump between the phases, can be overcome by more
sophisticated algorithms to handle the pressure jump at the
interface (e.g Francois et al. (2006); Dijkhuizen (2008)),
opening up the possibility to simulate air bubble swarms in
water.
In this work, we study the drag force of air bubble swarms
in water at relatively high void fractions by simulating a
small number of bubbles in a periodic domain. First, the
Front Tracking model is shortly introduced. Subsequently,
we study the influence of the selected number of bubbles in
a periodic domain while keeping the void fraction the same,
and show how the number of bubbles affects the bubble clus-
tering and drag coefficient. Finally, we describe the drag
coefficient as a function of the void fraction.

FRONT TRACKING MODEL

Front Tracking modelling is a well-known Direct Numeri-
cal Simulations (DNS) method (a.o. Unverdi & Tryggvason,
1992; van Sint Annaland et al. , 2006; Dijkhuizen, 2008) to
simulate multiphase flows with deformable interfaces in full
detail. The main advantage of Front Tracking modelling for
this work is that bubbles do not coalesce unless a specific
merge condition is implemented (see e.g. Singh & Shyy
(2007)). A short introduction of the Front Tracking method
employed in this work is given here. For a more detailed
description, and a validation for the drag on single rising
bubbles, see Dijkhuizen (2008).

Flow solver

The fluid flow is described with a single fluid formula-
tion of the Navier-Stokes equation for incompressible fluids
(Eq. 3), while mass conservation is enforced by the continu-
ity equation (Eq. 4):

ρ
∂u

∂t
= −∇p− ρ∇ · (uu)−∇ · τ + ρg + Fσ (3)

∇ · u = 0 (4)

where u is the fluid velocity, τ the stress tensor and p the
pressure. We use a finite difference technique on a stag-
gered grid and solve the discretized equations using a stan-
dard two-stage projection-correction method with an effi-
cient ICCG matrix solver.

Interface mesh

The interface between the phases is tracked using La-
grangian control points. The interconnection between these
points form a mesh of triangular markers. In Eq. 3, Fσ ac-
counts for the surface tension force, that can be directly eval-
uated from the markers’ positions. The individual pull-force
of marker a acting on markerm can be computed from their
normal vectors and joint tangent:

Fσ,a→m = σ (tma × na) (5)

The total surface tension force on a marker is thus obtained
by using Eq. 5 on all three neighboring markers of m. The
surface tension force is Fσ is then mapped to the Eulerian
cells closest to markerm, using mass-weighting (Deen et al.
, 2004).
An infamous aspect of DNS for very small bubbles (e.g. 1
mm air bubble in water) is the treatment of the large pres-
sure jump at the gas-liquid interface, which may cause spu-
rious or parasitic currents that affect the final solution sig-
nificantly. Similar to the techniques developed by Renardy
& Renardy (2002) and Francois et al. (2006) for Volume Of
Fluid (VOF) methods, the pressure jump has been accounted
for in the following manner:Z

∂S

[p] dS =

Z
∂S

Fσ · n

[p] =

R
∂S

Fσ · nR
∂S
dS

=

P
m Fσ,m · nmP

m Sm
(6)

When the surface tension force over all the markers has been
calculated, the pressure jump over the interface can be com-
puted and subsequently be mapped back to the interface
control points. This method of treating the pressure jump
reduces the parasitic currents for the 1 mm air bubble in wa-
ter case with two orders of magnitude, compared to Front
Tracking models without this implementation (Dijkhuizen,
2008).
After computation of the fluid flow, the Lagrangian control
points are moved to their new locations at every time step.
The fluid flow is interpolated using cubic splines, which are
constructed from the region around each bubble separately.
The presence of other bubbles within this region, does not
affect the construction of the splines, because the flow field
is continuous over the interface. The markers are advected
with the interpolated fluid flow using 4th order Runge-Kutta
time stepping.
The phase fraction is derived from the marker position an-
alytically using an efficient DTA (Divergence Theorem Al-
gorithm). The density in each Eulerian cell is calculated by
weighted averaging with the phase fraction, while the vis-
cosity is obtained by weighted harmonic averaging of the
kinematic viscosities (Prosperetti, 2002).

Adaptive time stepping

Computationally efficient simulation of dense bubble
swarms requires an Adaptive Time Stepping (ATS) tech-
nique. Especially when bubbles approach each other

2



closely, the flow needs to be resolved with a much higher
temporal resolution than, for instance, a single bubble case.
A simple, but efficient, ATS scheme was implemented, fol-
lowing the work by Alexander (1977).

For every time step the solution at the next time step is
calculated twice; first using a single full time step from t to
t+ ∆t, and then twice using a time step of ∆t

2
. The results

of these two calculations are compared. If the difference be-
tween the solutions for ∆t and 2 ∆t

2
exceeds a predefined

threshold, the timestep is decreased with 20%. If the differ-
ence is very small, the timestep is enlarged with 20%.

NUMERICAL SIMULATIONS

Numerical simulations of monodisperse bubble swarms
were performed using the physical properties for air bub-
bles in water. The properties and numerical settings can
be found in Table 1. The computational domain was cho-
sen cubic at all times, with full 3D periodic boundary con-
ditions. The Eulerian cell size was set such that 20 grid
cells fit on an equivalent bubble diameter at the start of the
simulations. The typical simulation settings are based on
grid/time step dependency tests (a.o. Dijkhuizen, 2008; Hua
et al. , 2008). The void fraction was adjusted by increas-
ing or decreasing the domain size. Initially, the bubbles are

Property Symbol Value
Bubble diameter d 2 – 6 mm
Number of bubbles nbub 1 – 16
Gas phase fraction α 1 – 42 %
Mesh width ∆x d

20

Domain size nx, ny, nz Varies with α
Marker size

(remeshing) 0.2 to 0.4 ∆x
Time step ∆t 10-7 – 2·10-4

Simulation time tend 0.5 – 3.0 s
Gas density ρd 1.25 kg m-3

Gas viscosity µd 1.8·10-5 Pa s
Liquid density ρc 1000 kg m-3

Liquid viscosity µc 10-3 Pa s
Surface tension

coefficient σ 0.073 N m-1

Table 1: General numerical settings for the air-water bubble
swarm simulations.

spherical and placed randomly through the domain. Their
initial positions were calculated with a Monte-Carlo simula-
tion (Frenkel & Smit, 2002); starting with an ordered config-
uration, the Monte-Carlo procedure perturbes the position of
the bubbles in a random fashion and determines the amount
of overlap between bubbles after each move. If the overlap
is too large, the move is rejected, otherwise it is accepted.
This procedure includes support for periodic boundary con-
ditions. The final step in this procedure does not allow any
overlap between bubbles.
The drag coefficient CD is obtained from the force balance
on a bubble, when the buoyancy is exactly counteracted by
the drag force, resulting in Eq. 7.

0 = FB + FD

0 = V (ρc − ρd) gz − CDA
ρc
2
|vz − uz| (vz − uz)

CD =
4d (ρc − ρd) gz

3ρc
˙
(vz − uz)2¸ (7)

nbub d Slip vel. [m/s] Std. dev.
1 2 mm 0.255 —
2 2 mm 0.163 7.3·10−04

4 2 mm 0.137 5.1·10−03

8 2 mm 0.138 1.2·10−02

16 2 mm 0.173 1.4·10−02

32 2 mm 0.171 3.5·10−02

1 4 mm 0.210 —
2 4 mm 0.158 3.7·10−04

4 4 mm 0.174 2.0·10−02

8 4 mm 0.179 1.3·10−02

16 4 mm 0.192 1.4·10−02

Table 2: Slip velocities of d = 2 mm and d = 4 mm cases,
for 2, 4 and 8 bubbles in a periodic box at 12% gas phase
fraction. The standard deviation of the average velocity of
all bubbles in the domain is also shown.
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Figure 1: The rise velocity of four d = 2 mm bubbles in
a periodic domain. The gas phase fraction is 12%. The
bubbles show interaction with each other already after about
0.05s. (Not the entire simulation time has been shown for
clarity.)

We calculate CD using the time average slip velocity of the
bubble and the liquid. The drag coefficients obtained for
multiple bubbles in a simulation are then averaged over all
bubbles in the domain. This method is preferred, since the
slip velocity of bubbles is sometimes zero (due to tumbling
effects), and the CD will go to infinity.

RESULTS

Number of bubbles

In this section the effects of the number of bubbles in a peri-
odic box are investigated at the same void fraction, varying
between 1 and 16 bubbles (and a preliminary result for 32
bubbles). First, the time-averaged bubble rise velocity is de-
termined for all bubbles from the simulation results, and the
average velocity of the liquid in the domain is subtracted,
yielding the average bubble slip velocity (see Table 2). Of
course, initial effects have to be disregarded, but these ef-
fects disappear rather quickly (depending on the void frac-
tion, but typically within 0.2 s; see Figure 1 for an example
of the slip velocity of four bubbles with d = 2 mm). The
standard deviation in the time-averaged, number-averaged
slip velocity is very high and amounts to about 10% of the
average velocity, which can also be observed from the wide
spread of slip velocities of the different bubbles in Figure 1.
While keeping the void fraction fixed at 12%, the average

slip velocity shows a minimum as a function of the selected
number of bubbles in the computational domain, both for
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Figure 2: A top-down view of an 8-bubble simulation (d =
2 mm) with a void fraction of 12% showing the horizontal
alignment of the bubbles. The black circumferencing lines
on the bubbles show the bubble surface cross-section at the
horizontal plane centered vertically in the domain. The color
filled areas show the entire vertically projected area of the
bubbles.

the case of 2 and 4 mm bubbles. This effect also has been
observed by Bunner & Tryggvason (2002) using simulations
with 4 and 12 bubbles at 6% void fraction. The explanation
of this effect is the horizontal coordination of the bubbles
in a plane.A cut-plane perpendicular to the vertical axis (i.e.
the vertically projected area) shows that the bubbles align
preferably horizontally (Figure 2). The maximum number
of bubbles that can align in a horizontal plane nmax can be
calculated as a function of the total number of bubbles nb,
the (locally averaged) void fraction α, the bubble aspect ra-
tio E = dz/

p
dxdy and the maximum horizontal packing

fraction φmax, assuming a cubic computational domain is
given by:

nmax =
4φ

π

„
nbπE

6α

« 2
3

(8)

The averaged bubble aspect ratio E can be obtained directly
from the simulation output (summarized in Figure 3a),
whereas the number of bubbles and the void fraction were
input for the simulations. The maximum packing fraction of
monodisperse solid disks (ellipses or circles) in a horizon-
tal plane is known to be at maximum φ = π√

12
≈ 0.9069.

However, for a randomly packed state of circles this is about
φ ≈ 0.82 (Kausch et al. , 1971). For our case with de-
formable rising bubbles through a liquid the maximum bub-
ble fraction of bubbles is even lower, and we estimate the
maximum “packing” fraction of the bubbles in a horizontal
plane to be approximately φmax = 0.7. The ratio of the
number of bubbles in the cubic domain relative to the max-
imum number of bubbles in a horizontal plane is given by
Figure 3b as a function of the selected number of bubbles
for 2 mm and 4 mm bubbles.

Case with 2 mm bubbles

A closer investigation of the strong increase in slip velocity
for the cases with nb = 8 and nb = 16 is carried out (see
Table 2). The aspect ratio E of the 2 mm bubbles is about
0.9 as can be discerned from Figure 3a. Using Eq. 8, it is
found for α = 12% that nb/nmax ≥ 1 for 12 bubbles or
more, which indicates that, in our cubic domain, maximally
12 bubbles can cluster horizontally when the void fraction
is set to 12%. A larger number of bubbles will cause the
“excess” bubbles to form a separate plane or to move freely
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Figure 3: The aspect ratio (a) and nb/nmax (b) as a func-
tion of the selected number of bubbles for the 2 and 4 mm
cases. Notice that the lower aspect ratio of the 4 mm bub-
bles nb/nmax to increase faster than for more spherical, 2
mm bubbles.

between the (periodic) planes. This is illustrated in Figure 4,
where snapshots of the simulation results with a different
number of bubbles are shown. For the nb = 8 case, the
bubbles are found preferentially on the same height in the
domain, whereas the nb = 16 case shows many bubbles
crossing between planes, which are accelerated by the wakes
of the leading bubbles, thus increasing their rise velocity.

(a) 1 bubble (b) 2 bubbles

(c) 4 bubbles (d) 8 bubbles

(e) 16 bubbles

Figure 4: Snapshots of simulations with a different number
of bubbles in a cubic domain with a fixed void fraction of
∼ 12%. (Air bubbles in water with an equivalent diameter
d = 2 mm. Images are printed to relative scale.)
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(a) (b)

(c) (d)

Figure 5: Horizontal bubble clustering for nb = 4 and nb =
8 cases (d = 4 mm). The maximum number of bubbles
that fit in a plane is approximately 6, so in the first case, all
bubbles in the domain prefer to align horizontally with all
the other bubbles. In the second case, the bubbles distribute
over 2 planes with each 4 bubbles.

Case with 4 mm bubbles

Bubbles with a diameter d = 4 mm in a bubble swarm
(air/water system) are much more oblate (E ≈ 0.65), as
can be deduced from Figure 3a. As a result of the larger
vertically projected area of the bubbles, fewer bubbles fit
maximally in a horizontal plane (nb/nmax ≈ 1 at nb = 6).
With four bubbles in the domain, a preference to align in
a single plane is observed (Figure 5a–5b). With eight bub-
bles, two planes are occasionally formed, and the bubbles in
the domain are distributed over these two horizontal planes
(Figure 5c–5d).

Drag force in swarms

The drag force of swarms with 8 air bubbles with d = 4
mm in water is obtained as a function of the void fraction.
The void fraction is varied by changing the domain size, so
that 1.6% ≤ α ≤ 34.8% using 11 different values for α.
Larger numbers of bubbles (i.e. nb ≥ 16 bubbles in a peri-
odic domain) could only be performed at high gas fractions
(since the computational domain increases with decreasing
void fraction) and hence do not provide insight of the drag
coefficient at lower void fractions.
Figure 6 shows the normalized drag coefficient (i.e. relative
to the drag coefficient of a single bubble rising in an infinite,
initially quiescent liquid) as a function of the void fraction.
We compare our results with the correlation of Lockett &
Kirkpatrick (1975), i.e. Eq. 2, from which a CD was de-
rived. Although both simulations and experiments show a
rising trend as a function of the gas phase fraction, it is clear
that our simulations predict a higher normalized drag coeffi-
cient for bubbles in a swarm. Because the measurements on
which this correlation is based were carried out with tap wa-
ter, the discrepancy may be (partly) attributed to the effect
of contaminants. Moreover, large-scale circulation patterns
do not develop in the periodic domain in our simulations,
whereas it could have influenced the experimental results.
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Figure 6: The normalized drag coefficient CD/CD,∞ on
8×4 mm bubbles, as a function of the void fraction α shows
an increase at higher gas hold-ups. The errorbars show the
standard deviation of the different drag coefficients obtained
for the 8 bubbles.
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Figure 7: The maximum number of bubbles that can form a
horizontal plane in the periodic box is plotted as a function
of the number of bubbles that could be used. In our simu-
lations we have used 8 bubbles. We find nb = nmax for the
simulation with 9.7%.

On the other hand, 8 bubbles in a domain could also not be
sufficient to capture all bubble interactions. Due to compu-
tational restrictions, it is not yet possible to simulate large
numbers of bubbles at different void fractions for a suffi-
ciently long time.
In general, we found that the slip velocity of the bubbles
only decreases as the void fraction increases (i.e. hindered
rise). The small dip at a void fraction of about 9.7% deviates
from the general trend and raised particular interest. Inspect-
ing the individual bubble tracks of this particular simulation,
we found that bubble tumbling did hardly occur in this sim-
ulation, whereas this is a commonly observed phenomenon
in the other simulations. Tumbling occurs when bubbles rise
through a plane of bubbles and collide with them (the “kiss-
ing” step). Due to the tumbling that follows, the bubbles are
slowed down, or even show negative slip velocities (see Fig-
ure 1). However, this does not happen for the 9.7% simula-
tion. Equation 8 is evaluated for the simulations performed
in this section, to investigate plane-formation effects. The
value of nmax is very close to 1 for the simulation with a
9.7% void fraction (see Figure 7). Hence, for this partic-
ular case all the bubbles in the domain just fit on a single
horizontal plane, and the bubbles hardly cross over between
the (periodic) planes. This illustrates that horizontal bub-
ble clustering strongly affects the drag coefficient, and may
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need to be taken into account in drag closure correlations.
Finally, we do not observe a decreasing drag coefficient (i.e.
cooperative rise) beyond about 15% void fraction, as mea-
sured by Simonnet et al. (2007). These discrepancies might
be related to the macroscopic circulation patterns in actual
bubble columns.

CONCLUSIONS

We have investigated the hydrodynamic behavior of bubble
swarms for the air/water system using Front Tracking sim-
ulations, using periodic boundary conditions to mimic large
bubble swarms.
First we evaluated the influence of the selected number of
bubbles on the time-averaged and number-averaged drag co-
efficient, while keeping the void fraction and other physical
parameters constant. Hindered rise with a minimum in the
drag coefficient as a function of the number of bubbles was
found, which is related to the preferential horizontal align-
ment of the bubbles.
Subsequently, the drag coefficient as a function of the void
fraction was studied using 8 air bubbles in water in a peri-
odic domain by varying the computational domain size. The
drag coefficient increases for higher void fractions, with a
discrepancy at a void fraction of about 10%. It was shown
that this deviation is also related to the maximum number of
bubbles that can coordinate themselves in a horizontal plane.
The effects of preferential horizontal alignment on the aver-
aged drag experienced by the bubbles may need to be taken
into account explicitly in drag closure correlations.
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