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ABSTRACT 
 

This study relates to the flow meters which are 
widely used in industry for flow measurements. In a 
vortex meter occurs a phenomenon of vortex 
shedding which produces a periodic signal. The 
frequency of the latter is proportional to the 
volumetric flow rate. Through this numerical study 
we show the significant influence of the shape of the 
bluff body on the performances of these 
apparatuses. The stabilized finite element method 
known as GLS (Galerkin Least Squares) is used in 
order to simulate the flow of the fluid, assumed 
Newtonian and incompressible. For the modelling 
of turbulence we used the LES (Large Eddy 
Simulation) method. 

 The undertaken comparative study, relates to 
the obstacles having a section which can be square, 
triangular or in the shape of the letter T. The 
performances of the meters using each type of 
obstacle are checked numerically for different 
Reynolds numbers. A detailed attention is given to 
the step of time used in order to avoid numerical 
instability and also to be able to capture the low 
frequency of vortex shedding. For the calculation of 
Strouhal number we use the FFT method (Fast 
Fourier Transformation). 

 
1. INTRODUCTION 

 
The principle of operation of a vortex flow 

meter is based on a natural phenomenon known as 
Von Karman. In the wake of a bluff body placed in 
a flow of fluid, we observe the formation of vortices 
alternately. This phenomenon of vortex shedding 
results in a periodic signal of the pressure and 
velocity fields. If the shape of the bluff body is well 
appropriate, we find that there is a linear 

relationship between the frequency of vortices and 
flow velocity. 

For a vortex flow meter the optimum would be 
to design a configuration where linearity between 
the frequency of vortex shedding and fluid flow 
velocity is satisfied for various fluids and a wide 
range of flow regimes. 
This linearity is sensitive mainly to the form of the 
bluff body and to changes in the Reynolds number 
(Goujon-Durand, 1995). 

The idea of designing a vortex shedding 
flowmeter was first proposed by Roshkol (Jiegang 
et al, 2004), who studied vortex shedding in the 
wake of a circular section cylinder. For this kind of 
bluff body, the temporal evolution of the formation 
of vortices in the wake zone is very sensitive to 
changes in flow regimes. In the case of sharp edges, 
the point of critical detachment is stable for a wide 
range of Reynolds number. For that reason, bluff 
bodies with sharp edges were adopted for the 
generation of vortices instead of a cylinder with a 
circular cross-section (Goujon-Durand, 1995). 

The dimension of the bluff body is also 
important because it is preferable to be large enough 
to generate significant fluctuation in the wake 
region. However, the disadvantage of large size is 
congestion of ducts thus causing an immense loss in 
energy. 

Recent research has explored vortex flow 
meters using increasingly small bluff bodies. 
Ultrasound techniques were used in these studies 
for the detection of vortex shedding and have shown 
great sensitivity to vortex frequency (Volker and 
Harald, 2003). 

To improve the repetitive aspect and periodic 
behaviour of vortex shedding for the turbulent flow 
regimes, in their experimentation Bently et al 
(1996) introduced a second bluff body in series with 
the first. The recurrent vortex detachment is strong 



 
only in the case of some forms of obstruction. It is 
in this context that other experimental (Jiegang et 
al, 2004) and numerical (Yih-Jena, 2004) 
investigations were held in order to determine the 
optimal architecture of flow meters with vortex 
shedding. 

This paper presents a comparative study of 
various forms of bluff bodies having a cross section 
which can be square, triangular or in the shape of 
the letter T. The performance of flow meters using 
each type of obstacles are checked for different 
Reynolds numbers. For each configuration, we 
calculated numerically the temporal evolution of the 
lift. Afterwards and using Fast Fourier 
Transformation the base frequency  dominating 
vortex break-up is determined for each Reynolds 
number. 

 
2. MATHEMATICAL FORMULATION 

AND NUMERICAL METHOD 
 
2.1 Mathematical formulation 

In this work, turbulence was modelled via the 
LES method (Large Eddy Simulation). This method 
uses the Smagorinsky model (Karamanos et all, 
2000; Zibouche, 2005), which relates the turbulent 
viscosity to the mean velocity gradient by a length 
characterising the scales and thus filtering them. 

The Reynolds equations for an unsteady flow of 
incompressible fluid are: 
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where U, P, f and tμ  Are respectively flow 
velocity, pressure related to the density of the fluid, 
body(volume) forces  and dynamic turbulent 
viscosity. 

The turbulent viscosity is calculated using the 
following expression: 
 

( )∑ ∇+∇=
ij

T
st UUhC 2ν   (3) 

 
h  is the local mesh size and sC = 0,01 is the 
Smagorinsky constant. 

The mechanical effect caused by the fluid flow 
on the body is made of three components: Fx and 
Fy acting in horizontal and vertical directions as 
well as the resulting moment M. 
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Where p,ν , ( )cc yx , , Γ  and η  are respectively 
pressure related to the density of the fluid, 
kinematic viscosity, coordinates of the center of 
rotation, the contour of the bluff body and its 
external normal. 

The dimensionless quantities corresponding to 
the resulting forces are the aerodynamic coefficients 
for drag, lift and moment. 
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The dimensionless quantity for the vortex 

shedding frequency is the Strouhal number: 
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DfS st

t =      (9) 

 
Where inf,Uf st and D are the frequency of 

vortex shedding, the velocity at the inlet and the 
height of the frontal surface to the flow. 
 
2.2 Numerical method  
 

The boundary conditions and the studied 
configuration are represented on Figure 1. 
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Figure 1:  Studied configuration and 

boundary conditions 



 
Because of the nonlinear nature of the problem 

under study, a linearization of the system of 
equations is required to be able to solve numerically 
the flow. 

The term reflecting the convective transport 
UU ∇. is linearized as 1. +∇ kk UU  with the 

successive substitution method which is known to 
have a large convergence for the Navier-Stokes 
equation with the high Reynolds number. 

The time derivative term is approximated by: 

t
UU
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Where nU and  1+nU  are successively velocity at 
time steps tn and tn+1.  

The discrete form of equations governing the 
flow is carried out by finite element method using 
the formulation stabilized type GLS (Galerkin Least 
Squares) (Zibouche, 2005). This formulation 
satisfies the LBB (Ladyzhenskaya - Babuska - 
Brezzi) condition. In addition it allows the use of 
hybrid element with equal interpolation order to the 
pressure and velocity (L. P. Franca et al, 1992). 

The basic element that has been used is a 
mixed, triangular shape Lagrange P2/P1 and 
checking the condition inf-sup also called LBB 
condition (Donea and Huerta, 2003). 
 

∫
Ω

Ω⎟
⎠
⎞

⎜
⎝
⎛ ∇+
Δ

f

dvUU
t

U
k + 

( ) Ω∇−Ω∇∇+∇ ∫∫
ΩΩ

dvPdvUU
ff

T
T :ν + 

⎟
⎠
⎞

⎜
⎝
⎛ ∇+
Δ∑ ∫

Ω

UU
t

U
k

e

GLS

e

[τ + 

( ) +∇∇−∇+∇∇ vUPUU k
T

T ].[ν  

( ) ∫
Ω

Ω⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

+=Ω∇−∇+∇∇
f

dv
t

Ufdqvv
n

T
T ]ν  

( )∑ ∫ ∇+∇∇+∇⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ

++
Ωe

T
Tk

n
GLS vvvU

t
Uf

e

ντ [

 
Ω∇− dq]                 (11) 

Fore the sake of clarity  1
1
+
+

n
kU  is notedU . 

We also defined nU as the velocity as previous 
time step nt  and kU  the velocity at the 
previous non-linear iteration. 
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tT ννν +=  

eh  : The local size of the element 

hU  : Local velocity 
 

3. NUMERICAL RESULTS 
 

In order to validate this numerical approach, we 
chose to compare our results primarily to those 
published by Okajima (1982) concerning the flow 
around a cylinder having a square section. 

 
3.1 Analyses of the flow around a cylinder of 

square section 
 

At time t = 25sec and a Reynolds number equal 
to 103 streamlines are represented on figure 2. The 
oscillations observed in the wake of the bluff body 
translated the phenomenon of vortex shedding 
which continued to occur in a perpetual and 
alternating manner in time.  

The periodic aspect of this phenomenon is also 
reflected by the temporal evolution of the 
aerodynamic coefficients represented in Figure 3. 

From the simulated values of the lift coefficient 
and by the use of the Fast Fourier Transform (FFT), 
one can deduce the base frequency dominating the 
phenomenon of vortex shedding. In figures 4 & 5 
are represented two of the lift coefficient spectra 
corresponding to Re=103 and Re=104. 

Figure 6 shows the variation of the Strouhal 
number as a function of the Reynolds number. The 
curve reflects a good agreement between the 
simulated and experimental values with a relative 
error whose peak reaches 9% for 6000 <Re <40000. 

From Table 1, we can see that the simulated 
Strouhal numbers are underestimated by about 5%, 
as compared to the experimental values of Okajima 
(1982). 
 

 
 
 
 
 
 

 

 

 
Figure 2:  Stream line representation for 

Re=103 at time t=25sec 



 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Strouhal number (reference value from Yih-Jena and Wen-Hann (2004)) Re 
Present study Yih-jena (2004)  

(numerical) 0.04 
Yih-jena (2004) 
(numerical) 0.01 

Okajima (1982) 
(experimental) 

100 0.130 0.139 0.144 0.135-0.140 
200 0.135 0.148 0.152 0.140-0.148 
250 0.137 0.148 0.151 0.140-0.148 
300 0.143 0.147 0.149 0.139-0.140 
400 0.132 0.144 0.138 0.130-0.135 
500 0.1298    
1000 0.125   0.125-0.13 

 
Table 1: Comparison of the simulated Strouhal number and the published results (square section) 

 
3.2 Numerical prediction of the Strouhal number 

for different shapes of bluff body 
 

Shapes of bluff body which are chosen to be 
analysed numerically are represented in figure 7 and 
are square, triangular and in shape of letter T. The 
evolution of the Strouhal number as a function of the 
Reynolds number is shown in Figure 8. For each 
form of bluff body the Strouhal number evolves in a 
different way. 

For values of Re> 103 the Strouhal number is 
almost constant. This adheres perfectly with the 
results presented by Volker and Windorfer (2003). 
Therefore, the frequency of vortex shedding is 
proportional to the flow rate. Knowing the reference 
Strouhal number for each type of bluff body is 
therefore imperative for the effective design of 
vortex flow meters.  
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Figure 3:  Time history of drag, lift and 
moment coefficients for Re=103 
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Figure 4: Representation of spectra 

corresponding to lift coefficient Cx for Re=103  
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Figure 5:  Representation of spectra 

corresponding to lift coefficient Cx for 
Re=104
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Figure 6:  Present results compared to the 
experimental results of Okajima(1982). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7: Representation of different shapes of bluff body studied 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
  

 
 

Figure 9:  Representation of Poincare sections for Re=103 
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Figure 8:  Variation of the Strouhal number according to Reynolds 

 
-a- Square section 

 
-c- Triangular section 

second disposition 

 
-b- Triangular section 

first disposition 

 
-d- Shape of letter T (first 

disposition) 
 

-e- Shape of letter T 
(second disposition) 
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-a- Square section 
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-b- Section in the shape of the letter T ( first 

disposition) 



 
 Volker and Windorfer (2003) propose the 
following reference values: 
- Triangular section (first disposition) St= 0,1 
- Triangular Section (second disposition) St=0,24 
- Section in the form of letter T (first disposition) 
St=0,2 
- Section in the form of letter T (Second 
disposition) St=0.12 

The constancy of the Strouhal number for 
great values of Reynolds is assured for all forms 
of bluff bodies used. However, for low flow 
regimes, the behaviour significantly differs from 
one shape to another. The optimal desired shape 
in the context of vortex flow meters is the one 
which disrupts in a minimal way the Strouhal 
number from its reference value. For this reason 
and from figure 8 we note that the square shape 
and the shape having the form of the letter T (first 
disposition) both are the most suitable. 
 In summary, in order to design an effective 
vortex flow meter, it is important to get a Strouhal 
number which is virtually constant regardless of 
the value of Reynolds number. It is also hoped 
that the vortex shedding signal obtained is the 
least polluted. It is known that the process is more 
or less random depending on the geometry studied 
as well as the flow regime. To better understand 
the phenomenon, we have plotted Poincare 
sections for the shapes having a square section 
and a section in the form of letter T. These are 
represented in figures 9(a) and (b). It can be 
inferred from these figures that for a value of the 
Reynolds number of 103, the signal of the lift is 
clearer in the case of a bluff body of square 
section. 
 

4. CONCLUSION 
 

For the design of a vortex flow meter we rely 
on certain linearity between the frequency of 
vortex shedding and flow rate. In other words on 
the constancy of the Strouhal number. However, 
this property is very sensitive to the shape of the 
bluff body and is valid only for quite high values 
of the Reynolds number. 

By using the finite element method, we 
simulated the flow around several shapes of bluff 
bodies which are: square, triangular and in the 
form of letter T. From the temporal evolution of 
the lift for each configuration and using the fast 
Fourier transform (FFT), the base frequencies 
were determined. The evolution of Strouhal 

number has thus been determined as a function of 
the value of Reynolds number. 

Shapes of bluff bodies that have proved the 
most suitable for possible use in vortex flow 
meters are the square shape and the shape in form 
of the letter T (first disposition). Then, using the 
plot obtained for Poincare sections, it has been 
estimated that the signal emitted by a bluff body 
of square section is less polluted. 

It remains to be noted that other investigations 
are necessary to be able to better approximate an 
optimal architecture of a vortex flow meter. 
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