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ABSTRACT velocity components, i.e. wave regime see Fig. 1.1.

The presented paper s focused on the static &$$in ;0. o4 ictures are characterised by following:
definition of fluid layer according to the numbef o . . i
Taylor vortices. There is a gap between two cyliade Co_uette flow — fluid moves |'n the tange.ntlal
where the inner one is rotating and axial flow istn direéction around the rotating cylinder, see Fid. 1.
assumed. The stiffness matrix as a function of langu a).
speed is determined too. The fluid layer stiffnisss Taylor vortices (TVF) - basic steady flow
specified for rotor instatic balance and problem of forms into axial symmetrical toroidal Taylor
damping is not considered. The Taylor vortices'vortices and is described by critical vallig (T
influence is evident in the stiffness matrix, whaltehe >T.1>41,3), see Fig.1.1 b).

elements are of the same orders of magnitude. In \ave regime (WVF) — flow changes with
comparison with the stiffness matrix derived frame t increasing angular velocity of inner cylinder and

;Zygﬂlglselgggﬁgnlf);/vgl\r/hti(:hser\]/ifal c;gté?sryoft:qe w’;?jorTaylor number too. FoF, >T; the wave motion of
g er by . ; vortices in tangential direction is observed. Caiti

then the others, there is a marked difference. tasry . . . .
number T, is approximately in interval

will be used in new design of classical journal teg _ .
using Taylor vortices principle. T~(1,1+100)*T.; and depends on the gap geometry

and fluid characteristics, see Fig. 1.1 c).
Modulated wave regime (MWVF) —in this
1. INTRODUCTION state the modulation of the wave vortices motion in

Classical theory of journal bearing is based oncircumferential direction is discovered and it is
Reynolds equation solution for infinite bearing possible to define azimuth wave frequency.
length. This equation relies on an assumption, thalToroidal vortices are tapered and propagate in
the convective acceleration in Navier-Stokestangential direction.

equations is ignored, so the linear problem is chaos (TURB) -chaos regime is observed for

solved. But the flow based on this assumption iSTz(100+1OOO)'01. It is very unstable and depends

characterised by the streamline that lies in the . . . .
perpendicular plane to the rotation axis (Couette®” radius rate and experimental experience (in case

flow). Taylor (Taylor, 1923) established that thereOf quick revolution change you can get another
is point in concerning with this fluid flow statifi ~ fluid flow structure than in case of slow regular
It is proved, that so defined fluid flow is modifie angular speed increasing). Another revolution
by vortices named by Taylor for Taylor number increasing causes the turbulent effect formation
greater than 41,3. Taylor number is defined by termdisturbing the original vortices, see Fig.1.2.

T= RO‘“S\F (1.1)
v R

whereR, is shaft radiusy is kinematical viscosity,
o is angular velocity and is radial gap. Thus for
T>41,3 there is impossible to use Reynolds egs.
Taylor vortices can exist in steady or unsteady
cases, which is evident in non zero radial andlaxia




a) Couette flow b) Taylor vortices c) Wave regime 2. STABILITY OF STATIONARY FLOW

e The main goal is to find stability conditions of
stationary fluid flow in rotationally symmetric
~_ - NN region. Generally the double continuous bounded
D region with volumeV filled by fluid is supposed.
A . T .
T e Coordinate system()g) is inertial and (y,) is
- rotating coordinate system with angular velocity
\/ o _ )
w; = around axix; . Because the goal of the
N work is to define the angular velocity influence on
Figurel.l Vortex structures stability, therefore the final equations will be

formulated in rotational coordinate systéyp),
using Einstein summation symbolics. Navier Stokes
equation and continuity equation are in form

aZWi +£@ =0

The valueT,, is theoretically defined for infinite
length of cylinder. Neither physical experiment nor
numerical experiment can accomplish this
hypothesis, therefore the critical Taylor value —-+&,, £y, + 265 WW, +V
differs. Many of vortex structures were dy;0y; P oy,
experimentally and numerically solved at VSB-TU,
see Fig.1.2, (Farnik, 200Bozubkova et al, 2003).  ow.

547=0 (2.1)
Couette  Taylor Wave Modul Turbcks i
flow regime  vortices wave 5
i . W
[egie In equation (2.1) the termé—t' is so called

substantial derivative defined as:

ks Bl I B RV Y 2.2
& ot ody ' (22)

where w are the relative velocity componentg,
is pressure, ¢, is Levi-Civit antisymmetrical

tensor. Influence of boundary condition will be
specified later.

U % — 2.1 Stability conditions

Figure 1.2Physical and numerical experiment of Stability conditions can be examined using the
vortex structures [35] known principle, defined by Taylor (1923) in case
) o o of stability study of rotational fluid motion beter
It is not necessary to justify the transition 10 g concentric cylinders (Taylor, 1923). Based on
'([:_Sta‘lb'“tylgése'(g:in \:jalue lf‘hnalys'lséﬁgs_r;aylor_ didhis principle the small disturbance on original
aylor, andrasekhar, ere is _ _ .
possible to obtain the general steady flow stabilit steady flow 6_"’0i = W (yj)’ Py = po(yj )) Is
condition analytically, when the Navier Stokes Superimposed, i.e.:
equation and continuity equation for
uncompressible fluid and boundary condition is W, =Wy *+V, (y,-,t)
used. Problem solves steady flow disturbance p=p +a(y- t)
analysis by using eigen values (Pochyly et al, 0 P
2003).

(2.3)

Above defined terms are put into equations (2.1)
and (2.2). Neglecting the small nonlinear terms and
subtracting the stationary parts of solution the



equations (2.1) a (2.2) for disturbance can
written in form:

—+ o \J +_iW0' +2£i3mQVm -
ot ay, ' ody,

2.4
_y 0 100 o9

ay;0y; p oy,

ov,
— =0 2.5
ay, (25

The stability conditions will be investigated using

be u =a +ib;a,b ORe

, . (2.10)
h=h, +ih,; hy, h, ORe

Inserting (2.10) in (2.11) we get the relation tor

aj|u| dv+j °'|u| dv+2 fo, ‘Z}';' dv -
—uj 4 udV —J(% 'hjdv 0

(2.11)

eigen value and vector analysis. Eigen value can bﬁrom (2.11) it is obvious, thahe stability is not

determined as follows. Let
i(yj1 )- i(yji ) e®; cr—h(yj,s)eSt

where s is complex number s=a+iw,
o, [JRe. Stability point is defined by value of
o, i.e. a{0. Inserting (2.6) in (2.4), (2.5), we

obtain the following equation for definition the
eigen values:

(2.6)

sy +Muj +ﬂwOJ +2£,,Qu —
ay; ay,
2.7
- aZUi +iﬁ =
ay,0y; P 0y,
ou =0 (2.8)
oy,

Quantitative analysis of stability conditions isbd

influenced by Coriolis forces Equation (2.11) can
be simplified using Gauss-Ostrogradskij theorem,
continuity equation and non-permeability condition

of boundary, i.e. cn =0. After simple
adjustments and transformation into cylindrical
coordinate system(r,@, y3) and preconditions

W,, =0andw,, =0 we obtain (2.11) in form:

2 0 (W ou, 0u,
a{[|u| dV:HrE(T"’J(aT% +hb, Fﬂagj}dv

(2.12)

where |u/ = uu,”. From the expression (2.12) it is

obvious, that instability arises in case of negativ
value of integral (2.12) and this is condition of
Taylor vortices arising too. This situation comés u

on using boundary conditions in equations (2.7),at specific rotor angular velocity, when convective

(2.8). At first the equation (2.7) is multiplied by
function ui conjugate with u, and integrated
(scalar multiplication). So:

sju dV+_|. 0'uudV+
v ay,

N sj%u;*wojdv +26,0 j uudv- (2.9

6yi
u,dv +— a—h
Py oy,

'dv =0

_Vj 6y, y,

Because of evaluating the functions ui,h will
be decomposed in real and imaginary part:

acceleration forces exceed the effect of viscous
forces. This instability appears on the first eigen

mode shape, Whe(aTa¢+brb¢)>O i.e. Taylor
number T=413.

3. NUMERICAL RESULTS

3.1 Physical model and boundary conditions

Numerical experiment is focused on stable
Taylor vortices corresponding to Fig. 1.1 b). Other
vortex structures are from point of journal beasing
applications unsuitable and are not in this work
investigated. Computational region was defined on
the gap between two cylinders of following

geometry:
- inner radius r=0.025 m
- gap width s=0.0003 m



- cylinder length [=0.003 m are evident in vortex shape. Vortices distributi®n

- eccentricity iny direction e=0, 0.00003, regular. It is better observed in schematic figoifre
0.00006, 0.00009 m radial velocity in the same cut plane, see Fig. 3.2
Inner cylinder revolved with speed: In this case the numerical convergence was
- revolutions per minute n=200, 500, 600, Ssatisfactory.
700, 800, 900, ;
1000, 2000, 3000,
5000, 7000, 9000, "
11000 mirt . -y
Water was chosen as fluid with following physical Radial :
properties: velocity 0
- density p=1000kgn? 10" m.s']
- dynamical viscosity n=0.001Pa.s 2
- kinematical viscosity v=0.000001rfs* 3
3.2 Turbulent models and results Position .10 -3 m]|
The length of the cylinder was defined with Figure 3.2Radial velocities in the most thin and
respect to reasonable number of grid elements, most wide part of gap

boundary planes were chosen as symmetry planes.
Moreover every vortex must be covered at least byAt high speed 1@ =9000 min™) in given
ten grid elements in every coordinate directioidGr geometry tasks have bad convergence, which
elements number was around 600000. indicates previously described wave regime. Is thi
Taylor number according to given speed lied incase tasks must be solved as time dependent.
interval T D<O;1500>, Reynolds number Because vortices number does not change in
defined regime, the value of moments and stiffness
Re [J(150;11000) . Reynolds number matrix is nearly constant. But there are not many
characterizes type of fluid flow, i.e. laminar, problems of this kind. In different geometries this
transient between laminar and turbulent andProblem can be more significant (Farnik, 2006).
turbulent flow. Based on values of Reynolds Number of vortices changes between three to seven
number and on physical and numerical experimentgccording to revolution and eccentricity, see Fig.
(Kozubkova et al, 2003; Pochyly et al, 2002)3.4. For lower revolution the eccentricity influenc
laminar model was chosen. Standard two-equatio# lower and for higher revolution is higher.

K —& turbulent models underestimate vortex
structures or number of vortices tends to zeroyOnl
LES model is for computation available too, but it
takes much more time due to time dependent
equations and many testing cases. Therefore
laminar model was selected. For illustration some =
results (speed n=3000 rifinand eccentricity
€=0.00006m) are shown in Fig. 3.1.
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Figure 3.1Radial velocities in the narrowest and
idest part of

wicest part ot gap 4. STIFFNESS OF FLUID LAYER

In Fig. 3.1 we can see number of vortices, which  stiffness of fluid layer is defined in dependence

was the same in both parts of the gap. Differencesn region created by two cylinders. The inner



cylinder rotates with constant angular velocitye th classical theory of journal bearings based on

outer one is stationary. Axis of inner cylinder is Reynolds equation the stiffness matrix has all

shifted by the eccentricity specified by vector elements of the same orders. It will significantly

componentg = (el,e2 . Force caused by fluid influence rotor dynamics based on Taylor vortices

impacting on rotor depends on eccentricity and is_orlnqlple. There was onIy_ statl_c stiffness preseénte

given by: in this paper. The theory is being developed fer th
added mass and damping evaluation as well.

F=-Ke (4.1) For any questions:  pochyly@fme.vutbr.cz
K K milada.kozubkova@vsb.cz
where the stiffness matrikK=| | with fialova@fme.vutbr.cz
21 K22
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