
0

 

A time-independent finite difference analysis of flow induced cylinder vibration  

Bang-Fuh Chen1  
Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan 

804, Fax: 886-7-5255065, E-mail: chenbf@mail.nsysu.edu.tw 
 

Chih-Chung Chu2 

Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan 
804  

 

ABSTRACT 
In marine engineering, offshore structures often 

encounter waves, currents and earthquake 
excitations. The fluid-structure interaction is a topic 
of primary interest in research and design. One of 
the basic studies is flow across a moving cylinder.  
During earthquake excitations, the relative velocity 
between the cross flow (current) and a moving 
cylinder (induced by ground motion) could be very 
large and the flow might be turbulent. The 
numerical simulations of viscous oscillating fluid 
flow pass a circular cylinder with a spring support 
are presented in this study. The cylinder of spring 
support is free to move in the stream-wise direction 
and damping ratio and spring stiffness is 
considered in this moving system, the Reynolds 
numbers of inflow is 200, and KC number is 4 for 
simulations cases. The numerical finite differences 
method and coordinates transformation system used 
to simulate these cases. There are 2 cases presented, 
one is harmonic oscillating flow pass a fixed 
cylinder, the other is harmonic oscillating flow pass 
a cylinder with spring support.  

1. INTRODUCTION 

Uniform steady flow passing a fixed cylinder 
was investigated for many decades, there are many 
data and results from theoretical analysis, numerical 
simulations and experimentally investigates. Such 
as Collins and Dennis (1973, Re = 5 to ∞), Ta 
Phuoc Loc (1980, Re = 300, 550 and 1,000; 1985 
Re = 3,000 and 9,500), Braza (1986, Re = 100, 200 
and 1000), Smith (1988, Re = 2,500~105). 
Karniadakis (1992, Re = 200~500). Koumoutsakos 
(1995, Re = 100 and 200).  Persillon (1998, Re = 
100~300). And then the relative research extend to 
adding the oscillating frequency, the input 

conditions of inflow was changed from stead flow 
to oscillating flow or changed from fixed cylinder 
to oscillating cylinder in static fluid, such as 
Justesen (1991, β = 196~1,035, KC = 0~26), 
Anagnostopoulos (1998, Re = 200, KC = 2~20), 
Dütsch (1998, Re=100 and KC = 5) and so on.   

This study major simulated cylinder of free 
vibration in oscillating flow, involved damping ratio 
and spring stiffness in moving system. The 
Reynolds number is 200, and the KC number is 4. 
The oscillating frequency of flow is given a 
harmonic sine function U(t), the maximum velocity 
of oscillating flow is U0. The sketch of simulation is 
show Fig-1. 
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Fig-1 

2. Numerical method  

2.1 Coordinate transformation 

Since the oscillating cylinder surface is varying 
with time, the first of the following equations is 
used to remove the dependence of b2 on time (Hung 
1981).  
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Fig-2 The definition of sketch of the problem 

2.2 Governing equations 

This study used the finite difference method to 
solve the stream function and vorticity transport 
equations. The coordinate system is attached on the 
circular cylinder like Fig-2, and the governing 
equations are as following equation (5) and (6):  
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Also shown in the definition sketch, b2 is the 

distance between outer boundary and the instant 
center of the moving circular cylinder and can be 
shown and expressed as 
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 (2) 
in which δx(t) is displacement of the oscillating 

cylinder and ar is distance between the outer 
boundary and the fixed origin. The cylinder face is 
mapped onto r* = 0 and the outer boundary onto r* 
= 1. And the second transformation would map φ 
onto a region Φ = 0 and 2. Thus, the time-dependent 
boundary of the moving cylinder is transformed to a 
fixed computational domain of a rectangular region. 
Because of the transient boundary layer 
development, fine grids in the radial direction are 
required around the cylinder. The coordinates r* is 
further transformed so that the layer nears the 
cylinder will be stretched to produce finer grid 
meshes *r∆  near the cylinder face.  

The numerical procedures are based on the 
Crank-Nicolson method. Since two equations are 
coupled, iteration is needed to achieve acceptable 
convergence condition. Secondly, calculate velocity 
fields and integrate the momentum equation to 
obtain the pressure on the cylinder surface. The 
flow around the cylinder is analyzed by relating the 
flow patterns with the acceleration and deceleration, 
the growth and decade of vortices, the pressure and 
shear around the moving cylinder. On the cylinder 
surface, the vorticity distribution and the moving of 
the separation point are correlated with the phases 
of oscillation, and with the pressure distributions on 
the cylinder. The flow patterns are solved by the 
developed finite difference method (Chen 1997), 
while the dynamic response of the cylinder 
oscillation is evaluated by direct Newmark 
integration method. The hydrodynamic force on the 
oscillating cylinder and the dynamic response of the 
cylinder motion are calculated and the forces are 
compared with that estimated from Morison’s 
equation. The dependence of the dynamic response 
of the oscillating cylinder with Reynolds number 
and KC number is extensively studied and 
discussed. In order to gain the interaction 
relationship between cylinder and fluid, the one 
degree freedom vibration system involved here, the 
equation is (8), m is structure mass, c is damping 
coefficient, k is spring stiffness. The calculating 
procedures are as following steps: first, use the 
equation (1) and (2) combine coordinate 
transformation to get the vorticity values and then 
calculating force on cylinder surface, and from 
equation (8), use Newmark’s method to get the 
displacement and velocity of next time step. 
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3. Results and discussion 

3.1 Numerical validation 

Ta Phuoc Loc (1985) presented the cross flow 
pass a fixed cylinder at Reynolds numbers equal 
3000 by numerical simulation and made 
comparisons with the previous experimental results 
of Bouard and Coutanceau (1980). The 
experimental visualizations of Bouard and 
Coutanceau (1980) when T=4, Re=3000, is showed 
in Fig-3 (a). The streamline pattern of Ta Phuoc Loc 
(1985) at T = 4.0 is showed Fig-3 (b). The 
streamline pattern of present numerical simulation, 
is plotted in Fig-3 (c), and the comparison shows 
good agreement. Table 1 demonstrates a further 
detail comparison of wake height and length among 
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three results. The numerical accuracy of present  
simulation is very good. 
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Fig-3  Streamline pattern of cross flow pass a fixed 
cylinder Re = 3000 at T = 4.0 (a) Bouard and 
Coutanceau (1980), (b) Ta Phuoc Loc (1985), (c) 
this study.  
 

Table-1 

Comparison items 
for Re=3000, T=4 

main wake 
length / radius 

main wake 
height / radius

Bouard and 
Coutanceau (1980) 1.181 1.101 

Ta Phuoc Loc 
(1985)  1.079 1.066 

This study 1.109 1.118 

 

3.2 Oscillating flow pass a fixed cylinder, 
Re=200, KC=4 

 
The case studied in this paper belongs to the 

range A of eight different flow patterns  reported by 
Tatsuno and Bearman（1990）and there is no flow 
separation in this case. 
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Fig. 4 The vorticity contour and streamline patterns 
development around cylinder. 

 
The Fig-4, Fig-5, Fig-6 and Fig-7 show the 

vorticity contour and streamline patterns around 
cylinder at the T = 24, 24.25, 24.5 and 24.75 cycles. 
When oscillating flow pass the fixed cylinder on t/T 
= 24 cycle, the direction of flow just from toward 
west change to toward east, and the velocity of flow 
is zero at that time. When t/T = 24.25, the velocity 
of flow become maximum, and then decreasing to 
zero when t/T = 24.5. 

 



 

Fig. 5 shows the in-line force history for 
oscillating flow pass a fixed cylinder for Re = 200, 
KC = 4.  

 
 
 
 
 
 
 
 
 
 

Fig. 5 The in line force acting on a fixed cylinder, Re 
= 200, KC = 4 

 

3.3 Oscillating flow pass a cylinder with spring 
support, Re = 200, KC = 4 

 
This case investigated two dimensional viscous 

flow patterns and the in-line response of a flexible 
cylinder in an oscillating flow for Re=200, KC=4. 
In equation (8), m is mass of unit length of cylinder, 
and m is 0.01 kg per unit length, k is spring stiffness, 
c is the damping coefficient. And the damping ratio 
ζ is equal to 0.05, about frequency ratio fr is setup 
equal to 0.3. In equation (9), ff is the frequency of 
oscillating flow, fn is the natural frequency of the 
cylinder in air, and Tf is period of oscillating flow. 
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About the dynamic response system solution, P. 

Anagnostopoulos (1998) used the 4 order Runge-
Kutta scheme. We use Newmark’s method to solve 
for the displacement, velocity and acceleration of 
cylinder for next time step. 
 

In a preliminary simulation results, Fig. 6 shows 
the in-line force acting on cylinder and the dynamic 
displacement of cylinder. As plotted in the figure, a 
mild phase lag exists between cylinder displacement 
and in-line force. Since the dynamic response of 
cylinder displacement and acceleration are in the 
same phase, we can find the lag between in-line 
force and dynamic acceleration and the viscous 

effect might affect or retard the momentum force 
generated by oscillating cylinder.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 The in line force acting on a spring attached 
cylinder, Re = 200, KC = 4 

 
4. Conclusions 
 
         The numerical validation clearly shows the 
high accuracy of the present numerical model. The 
preliminary simulation results demonstrate the 
significant interaction of viscous and inertia effects 
on dynamic response of cylinder and forces acting 
on the cylinder and more detailed investigation 
should be made to obtain more response 
characteristics. 
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