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ABSTRACT 
The fluid structure interaction of shells and 

panels subjected to supersonic airflow has been 
investigated thoroughly in the past due to its 
importance in the aerospace industry. However, 
with advances in manufacturing, nuclear and 
biomedical engineering, there is a great need to 
further examine the nonlinear behaviour of shells in 
axial subsonic fluid flow. This paper describes an 
experimental and theoretical investigation of the 
nonlinear response of circular cylindrical shells 
subjected to axial fluid flow. The aim of this work 
was to gather important experimental data for (i) 
the critical flow velocity for instability, (ii) 
identifying the post-critical behaviour of the shell, 
and (iii) comparison with and validation of a new 
nonlinear theoretical model. 

1. INTRODUCTION 
For a long time, it was believed that 

subsonic/incompressible flows were associated with 
loss of stability in the form of mild divergence – in 
contrast to the vigorous flutter and richer dynamics 
observed with supersonic flows. However, new 
research in the early 1970s [Paidoussis and Denise 
(1972)] has sparked new interest in the analysis of 
shells subjected to subsonic flows. A full analytical 
linear model for cantilevered and clamped-clamped 
shells conveying incompressible fluid was provided, 
along with experimental results. In the clamped-
clamped case, the experimental results showed that 
at sufficiently high flow velocity the system 
develops flutter. In contrast, the linear theoretical 
model predicts that the system loses stability by 
divergence, and then at higher flow velocity by 
coupled-mode flutter. The interval between the two 
is generally small, especially if the fluid conveyed 
is air. Hence, it was reasoned that in these 
experiments flutter was entrained by the divergence, 
and that was the reason why divergence was not 
observed.  In the case of external (annular) flow, 
however, divergence was observed, but not flutter 
(though the maximum flow velocities available 
were probably insufficient for flutter). The 
interesting results described above for clamped-
clamped shells (and also for cantilevered shells, not 

discussed here) have given the necessary impetus 
for the nonlinear analysis of shells containing, or 
immersed in, subsonic or incompressible flow. A 
new nonlinear analytical model was developed [see 
Amabili et al. (1999)] for shells with simply 
supported ends using the Donnell shallow shell 
nonlinear equations and the Païdoussis & Denise 
linear inviscid flow model for the fluid-structure 
interaction. This model predicted loss of stability by 
divergence and no oscillatory solutions. Similar 
results were obtained for external flow [see Amabili 
et al., 2001]. 

  Mindful of the controversy on the existence of 
post-divergence coupled-mode flutter in pipes 
conveying fluid, only resolved via nonlinear theory 
[Païdoussis (2004)], it is clear that its existence for 
the shell problem must also be decided by nonlinear 
theory in this case – thereby clarifying also the 
nonexistence of divergence in the internal flow 
experiments. 

  The foregoing provide the motivation for 
performing new experiments and the development 
of a nonlinear theoretical model for shells with 
clamped ends to investigate the nonlinear behaviour 
of shells in axial flow.  

2. THEORETICAL MODEL 
The system under consideration is a thin circular 

cylindrical shell, of length L, mean radius R, and 
thickness h, as shown in Figure 1.  

 
Figure 1: Shell geometry and origin of coordinate 
system. 

 
The shell is assumed to be homogeneous and 

isotropic with Young’s modulus E and Poisson ratio 
ν. A Cartesian coordinate system is assumed, with 



its origin attached at one end of the shell, denoting 
the middle surface displacements in the axial, 
circumferential and radial directions by u, v, and w, 
respectively.  

2.1 Nonlinear structural model 

The nonlinear Donnell theory for shallow shells 
is used to describe the large amplitude shell motion, 
assuming shell deformations to be dominated by the 
radial displacement w. In this formulation the effect 
of the in-plane inertia is assumed to be negligible. 
These theoretical approximations limit the 
applicability of the theory to shells with a minimum 
number of nodal diameters equal to 4 or 5; the 
circumferential wavenumber, n, is such that 

21 n 1 [see Donnell (1976)]. The equation of 
motion is  
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where F is the in-plane Airy stress function which 
satisfies the following compatibility equation:  
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(3 12 1D Eh ν⎡= −⎣
2 ⎤⎦  is the flexural stiffness of the 

shell, ρ  is its mass density, c ( )3kg m s  the 
structural damping coefficient, and p the transmural 
pressure acting on the shell surface; 

( ) ( ) 24 2 2 2 2x y⎡ ⎤∇ = ∂ + ∂ ∂⎣ ⎦∂ , and the overdots 
represent time derivatives. Expressions for the 
relationships between stress resultants and shell 
displacements are given in Karagiozis et al. (2008).  

In our analysis the clamped boundary conditions 
are used in the classical form given by   

0u v w= = =  and 0w x∂ ∂ =  at x=0 and x=L.  (3)         
In order to reduce the continuous system to one 

of finite dimension, i.e. to discretize the system, the 
displacement w is expanded using an appropriate set 
of basis (shape) functions. Based on the work of 
Amabili et al. (1999) for simply supported shells, 
the following series expansion is proposed for the 
clamped-clamped shell model,  
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where mϕ are the eigenfunctions for a clamped-
clamped beam defined by ( ) ( )coshm mx x Lϕ λ= −  

( ) ( ) ( )cos sinh sinm m m mx L a x L x Lλ λ λ− ⎡ − ⎤⎣ ⎦ , mλ  
being the corresponding dimensionless eigenvalues 
obtained from solving the characteristic equation 
cosh cos 1λ λ = ; m is the axial wavenumber, n the 
circumferential wavenumber, and the coefficient 

[ ]nsinh sim ma mλ λ= − [ ]/ cosh cosm mλ λ− . The time 
functions ( ),m nA t , ( ),m nB t (2 1,0mA − and  are the 
unknown generalized coordinates. The mode 
expansion given in Eq. (3) satisfies exactly the 
boundary conditions, and both the continuity of the 
circumferential displacement and the null in-plane 
displacement v at the shell ends [Karagiozis, 2006]. 

)t

2.2 Fluid-structure interaction 

In the case that fluid-structure interaction is 
present, the transmural pressure term, p, in the 
equation of shell motion (1) is non-zero. The shell is 
assumed to be in contact with an inviscid fluid, 
flowing in the axial direction. Furthermore, it is 
assumed that the fluid is incompressible and 
isentropic and the flow is irrotational. Nonlinearities 
in the dynamic pressure and in the boundary 
conditions at the fluid-structure interface are 
neglected, because fluid movements of the order of 
the shell thickness may be considered to be small; 
and hence a linear formulation is quite reasonable. 
[see Gonçalves and Batista (1988), Lakis and 
Laveau (1991), and Selmane and Lakis (1997)]. In 
addition, pre-stress in the shell due to fluid weight 
(hydrostatic effect) is neglected. With these 
assumptions, the fluid structure-interaction can be 
described by potential flow theory. The potential 
flow is comprised of two terms; one which is 
represented by the uniform undisturbed axial mean 
flow velocity, and the other one by the unsteady 
flow. The expression for the unsteady potential flow 
is obtained by solving the Laplace equation  
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where ( ), , ,x r tθΦ  is the unsteady potential flow, r 
is the radial coordinate, and y Rθ = . Accordingly, 
the total perturbed pressure P acting on the fluid-
shell interface is defined as the combination of the 
mean pressure P  and the perturbation pressure p , 
i.e., P P p= + . The perturbation pressure is found 
using the linearized Bernoulli equation yielding  

( )Fp t U xρ= − ∂Φ ∂ ∂+ ∂Φ .                            (6) 
Furthermore, the fluid is assumed to be a cylinder 

of infinite length, which lies within a periodically 
supported shell of infinite length. This assumption 
allows us to use the method of separation of 
variables in the solution of the velocity potential. 
This requires an expression for w that satisfies the 
essential boundary conditions exactly for 



0 2x L≤ ≤ . This expansion for w is substituted into 
equation (5) and the solution for Φ is obtained using 
the separation of variables method. In the radial 
direction the two boundary conditions used are:  
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where the second is the impermeability condition.  
To ensure compatibility between the flow 

solution and the modal expansion for the shell 
displacements, a new relationship must be 
established for the solution of the velocity potential 
in the axial direction and the eigenfunctions 
involved in the solution expansion given in Eq.(4) 
[for details see Karagiozis (2008, 2006)]. This 
compatibility condition imposes a transformation of 
the clamped beam eigenfunctions to a series 
involving sine functions of the same wavelength. 
Therefore, the general form of the solution for w is 
given by 
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in which ( )m xϕ  appeared in Eq. (4).  
Using Eq. (9) and the radial boundary conditions 

for the fluid, given in Eq. (8) the solution for the 
perturbation velocity potential is 
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where the prime denotes differentiation with respect 
to r and the overdot indicates differentiation with 
respect to t. The final expression for the 
perturbation pressure is found by using the solution 
of the velocity potential in Eq.(11) into Eq. (6).  

Expressions for the perturbation pressure of the 
annular fluid can be derived in a similar fashion. 

3. EXPERIMENTS 
Four different experimental set-ups were 

employed to investigate the stability of shells of 
different materials and with different flow 
configurations. The first set of experiments was 

conducted with elastomer shells and annular air-
flow. The second was with elastomer shells and 
internal air-flow. The third and fourth sets were, 
respectively, with aluminium and plastic 
polyethylene terephthalate (PET) shells and internal 
water flow. The experimental apparatuses and 
procedures are discussed in detail in Karagiozis et 
al. (2005) and shall not be presented here. 

The elastomer shells used were made of silastic 
(RTV silicone rubber) [see Païdoussis (1998, 
Appendix D)]. The average values of the material 
properties are given in Table 1. Here E is Young’s 
modulus, ρ  the mass density of the shell, and ν  
the Poisson ratio. 
 

Properties 2N mE ⎡ ⎤⎣ ⎦
( )psi  

3kg mρ ⎡ ⎤⎣ ⎦

( )3lb ft  

ν  

Elastomer 52.82 10×  
( )40.9  

31.16 10×  
( )7.2 10×  

0.47 

Aluminium 970 10×  
( )610 10×  

32.7 10×  
( )21.70 10×  

0.33 

PET 92.3 10×  
( )63.3 10×

30.8 10×  
( )5.0 10×  

0.4 

Table 1: Shell material properties 
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                   (a)                                      (b) 
Figure 2: Set-up for (a) annular and (b) internal 
air-flow experiments.  

 
Figure 2 shows the two variants of the 

apparatuses used in the elastomer shell – air 
experiments. In the third and fourth sets of 
experiments the aluminium or PET shell is mounted 
vertically in the plexiglas test-section of a water 
tunnel. The space between the outer surface of the 
shell and the test-section is filled with quiescent 
water, which could be pressurized, if desired, via an 



external pressure line. Figure 3 shows the apparatus 
used in the aluminium/PET internal water-flow 
experiments. 

 
Figure 3: Apparatus for water tunnel experiments. 

 
The shell dimensions used in the annular 

elastomer air-flow and the internal aluminium/PET 
water-flow experiments are listed in Table 2. 

Properties Length 
    [mm], (in) 

Thickness 
[mm], (in) 

Length/radius 
L/R 

Elastomer 
Annular 

         40  
          (1.57) 

   1.5 
  (0.059) 

1.7 

Elastomer 
Internal 

         75 
          (2.95) 

  1.5 
 (0.059) 

3 

Aluminium        122.5 
          (4.82) 

  0.137 
 (0.005) 

2.98 

PET        100.1 
          (4.94) 

  0.3 
 (0.012) 

2.41 

Table 2: Shell dimensions 
A comparison of experimental observations and 

results with numerical results obtained from the 
nonlinear model described above is described next. 

4. COMPARISON OF EXPERIMENTAL 
AND THEORETICAL RESULTS 

The partial differential equation of motion was 
discretized to a set of second-order ordinary 
differential equations via a Galerkin technique. 
These equations are transformed into two first-order 
equations and studied using the software AUTO 97 
(Doedel et al., 1998) for continuation and 
bifurcation analysis of nonlinear ordinary 
differential equations.  

For the theoretical results presented in this paper 
the following nondimensionalizetion for the flow 
velocity is used: 

( ) ( )( ){ }1 22V U L D hπ ρ= .                        (12) 

4.1 Annular-air experiments 

A comparison of the theoretical versus the 
experimental results for the elastomer shell 
subjected to annular air-flow and n=4 is shown in 
Figure 4. This is a bifurcation diagram of the 

nondimensional shell amplitude at 2x L=  versus 
the nondimensional air-flow velocity, V. The 
theoretical results shown were obtained using an 
extended eleven degree-of-freedom model. The 
transmural pressure was set to ( )2tmP LΔ = 0  in 
this case, although in reality there is a small 
transmural pressure present in the experiments.  

Both theoretical and experimental results indicate 
loss of stability by divergence, and no oscillatory 
motions in the velocity range considered. In 
addition, the theoretical results predict a large 
hysteresis between the onset of divergence and the 
folding point (the point at which unstable Branch 2 
becomes stable), characterizing a subcritical post-
buckling behaviour of the clamped elastomer shell; 
the same kind of hysteresis was observed in the 
experiments. 
 

 
 
Figure 4: Elastomer shells and annular air-flow 
results:             , stable solutions,             , 
unstable solutions; ●, experimental data points. 
4.2 Internal-air experiments 

In all internal air-flow cases the shell system lost 
stability by divergence leading to oscillatory or 
“dynamic” divergence.  The mechanism of dynamic 
divergence is discussed in detail in Karagiozis et al. 
(2005); briefly, it is as follows: (i) the shell loses 
stability by static divergence; but, due to the large 
flexibility of the elastomer shell, the deformation is 
large enough (in many cases reducing the flow area 
by 50% or more), to cause a pressure build-up 
upstream of the shell; (ii) this pressure build-up 
causes the shell to open up and to buckle in the 
antiphase shape; (iii) this phenomenon is repeated 
again and again, giving the impression of an 
oscillatory instability. Fig. 5(a) shows in a series of 
photographs the dynamic buckling phenomenon, as 
observed for a shell with L/R=3 with n=4.  

                                                



 
       (a)                                          (b) 

Figure 5: Nonlinear response of elastomer shells in 
internal air-flow: (a) snapshots of dynamic 
divergence response for L/R=3; (c) comparison of 
experiments and theory  for L/R=4.4. 

 
In Fig 5(b), the theoretical results indicate loss of 

stability by divergence with a large subcritical 
bifurcation. In Karagiozis (2006), it was concluded 
that very pliable shells lose stability by divergence, 
giving rise to this dynamic buckling phenomenon, 
because of the large flow-constricting shell 
deformation involved. It is believed that Païdoussis 
and Denise (1973) observed the same phenomenon 
in their experiments but misinterpreted it as flutter; 
[see Païdoussis (2004)].  

4.3 Internal-water experiments 

A typical set of experimental and theoretical 
results for an aluminium shell subjected to internal 
water flow, a transmural pressure of 5.80 kPa and 
n=6 is shown in Figure 6.  

 
Figure 6: Aluminium shell and internal water flow 
for ( )2 5.8 kPatmP LΔ = ;         ,  stable solutions;                      
              , unstable theoretical solutions; ●, 
experimental data points.  

 
Both experiment and theory indicate that the shell 

lost stability by divergence exhibiting a strong 
subcritical bifurcation with a large hysteresis. 
However, quantitatively, the theoretical results are 
not close to the experimental data points. The 
reason for this disagreement lies on the nature of the 
boundary conditions in the experiments. In 
Karagiozis et. al. (2006) it is shown that the 
experimental boundary conditions for this 
experiment were simulating a boundary condition 
intermediate between clamped and simple supports. 

Nevertheless, no oscillatory solutions were obtained 
in either the experiment or theory.  

 

 

Figure 7(a) shows results of a PET and internal 
water flow. Both experimental and theoretical 
results are in excellent agreement predicting loss of 
stability by divergence following a large hysteretic 
subcritical bifurcation with n=6. In Figure 7(b) 
additional numerical experiments indicated that for 
specific values of the transmural pressure there is a 
range of flow velocities in which dynamical shell 
responses are predicted that lead to periodic, quasi-
periodic and chaotic shell oscillations, as discussed 
in Karagiozis et al. (2007). 

 
(a) 

 
                      (b) 

Figure 7: Clamped PET subjected to internal water 
flow: (a) comparison of experimental and 
theoretical results; (b) numerical results showing 
dynamical regions of chaotic oscillations for 
different transmural pressure values.  

5. CONCLUSION 
Typical theoretical and experimental results are 

presented indicating loss of stability by static, 
strongly subcritical divergence. No post-divergence 
dynamic instabilities or other oscillatory solutions 
were found to exist, except in small flow-windows 
for cases with considerable transmural pressure. 

The model found multiple solutions for specific 
values of the flow velocity, indicating that a jump 
from one stable solution to another is possible if 



enough perturbation is given to the shell system.  
In the experiments in Figs. 4, 6, and 7, it was 

found that the system lost stability by static 
divergence (buckling). Moreover, a strong 
hysteresis between the onset and, as the flow 
velocity was decreased, the cessation of divergence 
was found. Both these findings are in full 
qualitative agreement with the predictions of the 
theoretical model of a strongly subcritical static 
divergence. In the case of elastomer shells 
conveying air-flow, Fig. 5(a), the shell was 
observed to lose stability dynamically with very 
large amplitudes. However, as reasoned in 
Païdoussis (2003) and Karagiozis et al. (2005), what 
appears as an oscillatory instability is in fact a 
dynamic divergence phenomenon, associated with 
the flow constriction resulting from the large 
amplitudes of divergence in such pliable shells. 
Significantly, with the stiffer aluminium and PET 
shells, the system lost stability by static divergence, 
in agreement with the theoretical model. 

In general, the theoretical models predicted with 
excellent accuracy the qualitative changes in shell 
behaviour, and with reasonably good or excellent 
quantitative agreement the critical and post-
divergence behaviour of the experimental systems 
investigated. From the design point of view, this 
study shows that the critical flow velocity for shells 
cannot be predicted by a linear analysis, and that 
existing safety criteria may be inadequate, due to 
the subcritical bifurcation associated with loss of 
stability. 

6. ACKNOWLEGMENTS    
 The authors would like to thank NSERC of 

Canada and FQRNT of Québec for their financial 
support.   

7. REFERENCES 
Amabili, M., Pellicano, F., M.P.Païdoussis, 1999, 
Nonlinear dynamics and stability of circular 
cylindrical shells containing flowing fluid. Part I: 
Stability. Journal of Sound and Vibration 225: 655-
699. 

Amabili, M., Pellicano, F. and Païdoussis, M.P., 
2001, Nonlinear stability of circular cylindrical 
shells in annular and unbounded axial flow.  
Journal of Applied Mechanics, 68: 827-834. 

Doedel, E.J., Champneys, A.R., Fairgrieve, T.F.,  
Kuznetsov, Y.A., Sandstede, B., Wang, X., 1998, 
AUTO 97: Continuation and Bifurcation Software 
for Ordinary Differential Equations (with 
HomCont), Concordia University, Canada. 

Donnell, L.H., 1976, Beams, Plates and Shells, 
McGraw-Hill, New York. 

Gonçalves, P.B., Batista, R.C., 1988, Non-linear 
vibration analysis of fluid-filled cylindrical shells. 
Journal of Sound and Vibration 127: 133-143. 

Karagiozis, K.N., 2006, Experiments and theory on 
the nonlinear dynamics and stability of clamped 
shells subjected to axial fluid flow or harmonic 
excitation, Ph.D. Thesis, McGill University. 

Karagiozis, K.N., Païdoussis, M.P., Misra, A.K., 
Grinevich, E., 2005, An experimental study of the 
nonlinear dynamics of cylindrical shells with 
clamped ends subjected to axial flow. Journal of 
Fluids and Structures 20: 801-816. 

Karagiozis,K.N., Païdoussis, M.P., Misra, A.K., 
2007, Transmural pressure effects on the stability of 
clamped cylindrical shells subjected to internal fluid 
flow: Theory and experiments 
International Journal of Non-Linear Mechanics 42: 
13-23. 
Karagiozis,K.N., Païdoussis, M.P., Amabili,M., 
Misra, A.K., 2008, Nonlinear stability of cylindrical 
shells subjected to axial flow: Theory and 
experiments. Journal of Sound and Vibration, 309: 
637-676. 
Lakis, A.A., Laveau, A., 1991, Non-linear dynamic 
analysis of anisotropic cylindrical shells containing 
a flowing fluid. International Journal of Solids and 
Structures 28: 1079-1094. 

Païdoussis, M.P., 1998, Fluid Structure Interaction: 
Slender Structures and Axial Flow, Vol. 1, London: 
Academic Press. 

Païdoussis, M.P., 2004, Fluid-Structure 
Interactions: Slender Structures and Axial Flow, 
Vol. 2, Elsevier Academic Press, London, UK. 

Païdoussis, M.P., Denise, J.P., 1972, Flutter of thin 
cylindrical shells conveying fluid. Journal of Sound 
and Vibration 20: 9-26. 

Selmane, A, Lakis, A.A., 1997, Non-linear dynamic 
analysis of orthotropic open cylindrical shells 
subjected to a flowing fluid. Journal of Sound and 
Vibration 202: 67-93. 


	1. INTRODUCTION
	2. THEORETICAL MODEL
	2.1 Nonlinear structural model
	2.2 Fluid-structure interaction

	3. EXPERIMENTS
	4. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS
	4.1 Annular-air experiments
	4.2 Internal-air experiments
	4.3 Internal-water experiments

	5. CONCLUSION
	6. ACKNOWLEGMENTS   
	7. REFERENCES

