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ABSTRACT 

This contribution is focused on the analysis of 
dynamic behavior of fluid – elastic structure 
interaction. A blade vibration of centrifugal pump 
or water turbine in liquid can be typical technical 
applications and other hydraulic machines. 
Solution using commercial software packages is 
very difficult and time consuming. In this 
contribution is presented new mathematical and 
computational model of assemblage the local FEM 
matrices of added liquid affects. This solution is 
based on the assumption the solution to series 
expansion of finite number of eigen shape of 
vibration. As a sample the interaction the cantilever 
beam with liquid was chosen. Governing equations 
are the Navier - Stokes and continuity in curvy 
linear co-ordinates. The Bézier body for the 
determination of geometrical configuration and its 
solution was chosen. The MATLAB code for the 
software performing was chosen. The methodology 
is based on a transformation which allowed the 
separation liquid and continuum from each other. 
Using this is possible to solve nonlinear tasks in the 
individual frequency or time steps. 

 

Nomenclature 

B
ρ  - density, BS  - cross-section, 

B
E  - Young’s 

modulus, 
B

I  - second moment of area, y  - 

deflection, R  - radius of beam, ,
E

L l  - length, p  - 

pressure, ϕ  - angle, 1 2 3 3, , ,x x x x x=  - co 

ordinates, ( )jw t  - function, ( )ju x  base function 

(see appendix), 
k

q  - function, ijijij kbm ,,  - elements 

of local mass finite element matrices for mass, 
damping and stiffness, p  - pressure, η  - dynamic 

viscosity, ic  - velocity, ilv  - i  -th deformation 

parameter for l  - th shape of vibration, 1 2, ,
k kk

α α α  

- velocity functions, 1 2 3, , , ,
k k kk k

h b b b β  - pressure 

functions, δ  - Dirac’s function, τ,t  - time, 

10210 ,,,, LLRRR  - geometrical properties, 

321 ,,, ΓΓΓS  - denotation to the given surfaces 

enclosing liquid volume 

 

Subscript:  

B  - beam, E  - finite beam element, l  - liquid 
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1. INTRODUCTION 

A solution a problem of fluid - elastic structure 

interaction belongs to the most difficult problems in 

mechanics. From the point of view, they are three 

basic tasks. As the first is the eigen value problem, 

as the second can be the solution of steady state 

response do to the harmonic (periodic) excitation 

and at last the solution of unsteady state response 

(computational simulation). 

It is evident in the last time, that a takeovers and 

mergers the computational packages, where were 

interested only in the individual and limited parts of 

mechanics. As a sample is the merging the ANSYS 

(solid mechanics) and FLUENT (hydromechanics). 

This process is inevitable and makes the 

development and creation a new mathematical and 

computational models and algorithms for solution.  

It is necessary to have two different types of 

meshes for the solution the fluid – elastic structure 

interaction. One mesh is for a solid or structure and 

the second one for a fluid or surroundings. 

According the solving problem is almost already 

necessary to do some changing of mesh during the 

solution. It is evident, that this step leads to 

increasing the computational time consuming. In 

substance they are three basic types of changes of 

mesh: 

a. Layering 

b. Smoothing 

c. Remeshing 



When are used the commercial programme codes, 

especially ANSYS and FLUENT, these approaches 

are in detail presented in programme system manual 

(2005). General overview of methods to 

computational modelling is presented by Axise and 

Antuncs (2007).  

Problem of fluid structure interaction needs the 

different approach to the computational modelling. 

In the general, they the two basic problems, in the 

computational modelling, the first is bad numerical 

stability and the second is very time consuming. 

That is why a lot of scientists deal with the idea 

how to achieve better numerical stability and 

shorter tome of calculation.  

Daneshmand and Niroomandi (2006) presented a 

new method to simulation fluid – structure 

interaction. It is based on the use of a meshless 

technique named as Natural Element Method or 

natural neighbor Galerkin method in which the 

natural neighbor interpolation is used for the 

construction of test and trial function. The eigen 

value problem arising from the computation of the 

free vibrations of a coupled fluid – structure system 

is solved. Displacement variables for both the solid 

and the fluid domains are used, but the fluid 

displacements are written as gradient of potential 

function. One classical example is considered: free 

vibration of a flexible cavity filled with liquid.  

One of the possibilities how to achieve this, is 

presented by Stein at all (2003). In
 
computation of 

fluid-structure interactions, is used mesh update 

methods consisting
 
of mesh-moving and remeshing 

– as - needed. When the geometries are complex 

and
 

the structural displacements are large, it 

becomes even more important
 
that the mesh moving 

techniques are designed with the objective
 
to reduce 

the frequency of remeshing. To that end, is
 
present 

here mesh moving techniques where the motion of 

the
 
nodes is governed by the equations of elasticity, 

with selective
 
treatment of mesh deformation based 

on element sizes as well
 
as deformation modes in 

terms of shape and volume changes.
 

It is also 

presented some results from application of these 

techniques to
 
a set of two-dimensional test CASE. 

Legay and Kölke (2006) presented new approach 

to the solution, where velocity and pressure are 

solved on base the weak formulation of the 

governing equations of viscous and incompressible 

fluid flow (Navier – Stokes equations) is discretized 

by finite space – time elements using discontinuous 

Glerkin scheme for time integration. To capture the 

occuring moving discontinuities from embedding a 

thin solid body into the flow field, a locally 

enriched space time finite element method is 

applied to ensure a fluid mesh independent from the 

current configuration of the structure. Based on the 

concept of the extended finite element method, the 

space – time approximation of the pressure is 

enriched to present strongly discontinuous solution 

at the position of the structure. The similar 

approach is presented by Kölke and Legay (2006). 

A numerical method for investigation challenging 

interaction phenomena of viscous fluid flow and 

flexible structures of negligible thickness like 

membranes and plates on a topologically fixed fluid 

discretization is presented. Since the formulation of 

fluid, structure and coupling conditions uniformly 

uses velocities as unknown and the integration of 

the governing equations is performed on the 

deformed space – time mesh, the realization of a 

strong coupling of the physical domains becomes 

very comfortable and results in a monolithic 

system. 

Sigrist at all (2004) presented approach to he 

solution of the fluid structure interaction with a 

finite element discretization or with modal 

approach. The structure problem is modeled in the 

CFD code with various Fortran subroutines. Fluid 

is solved using finite volume discretization. For the 

achieving better numerical stability the special 

algorithm for the discretization in time and spatial 

domains is suggested.  

Giannopapa and Papadakis (2004) presented the 

first stage of development of such a method, in 

which the solid equations are formulated so as to be 

solved for velocity and pressure i.e. for the same 

unknowns as the ones for the liquids equations.  

In many cases the governing of the fluid are 

expressed in an Arbitrary – Lagrangian – Eulerian 

(ALE) frame reference that in a natural way treats 

the complex movement of the interface between the 

fluid and the structure without the need for surface 

tracking procedures. Lund et all (2004) is presented 

approach for analysis and semi – analytical design 

sensitivity analysis of time dependent fluid – 

structure interaction problem discretized by finite 

element methods. The aim of the method is to 

provide a general design tool than can be used for 

both analysis and synthesis of fluid - structure 

interaction where the dynamic interaction of a 

flexible structure and a viscous flow is in focus.  

In immersed interface methods, solid in a fluid are 

presented by Shung and Wang (2007), by singular 

forces in the Navier – Stokes equations, and flow 



jump conditions induced by the singular forces 

directly enter into numerical schemes. The article is 

focused on the implementation of an immersed 

interface method for simulation fluid – solid 

interaction in the 3D space. The method employs 

the method of control volumes for the spatial 

discretization and method of Runge Kutha the 4 

order for the time integration. The FFT – based 

Poisson solver for the pressure Poisson equation is 

used. A fluid – solid interface is tracked by 

Lagrangian markers.  

A Lagrangian model for the numerical simulation 

of fluid – structure interaction problems is proposed 

by Antoci et all (2007). In the method both fluid 

and solid phases are described by smoothing 

particle hydrodynamics: fluid dynamics is studied 

in the inviscid approximation, while solid dynamics 

is simulated through an incremental hypoelastic 

relation. The interface condition between fluid and 

solid is enforced by a suitable term, obtained by an 

approximate smoothed particle hydrodynamics 

evaluation of a surface of fluid pressure. The 

method is validated by comparing numerical results 

with laboratory experiments where an elastic plate 

is deformed under the effect of a rapidly varying 

fluid flow. 

The newly developed immersed object method is 

presented by Tai et all (2007). Parallel computation 

of unsteady incompressible viscous flows around 

moving rigid bodies using an immersed object 

method with overlapping grids is solved. Approach 

to parallel calculation is presented by Tai et all 

(2005). Newly is extended for 3D unsteady flow 

simulation with fluid – structure interaction, which 

is made possible by combining it with a parallel 

unstructured multigrid Navier – Stokes solver using 

a matrix – fee implicit dual time stepping and finite 

volume method. An object mesh is immersed into 

the flow domain to define the boundary of the 

object. The advantage of this is that bodies of 

almost arbitrary shapes can be added without grid 

restructuring, a procedure which is often time – 

consuming and computationally expensive.    

How is evident from this research study, all tasks 

the fluid - elastic structure interaction are solved as 

coupled. To achieve better numerical stability and 

shorter time computing they are used special 

algorithms. 

Another of possibilities for achievement these two 

problems is application of new type of boundary 

conditions for contact between continuum and 

liquid. Approach is based on the application the 

expansion to the solution according the finite 

number of eigen shapes of continuum vibration. 

The authors are many years interested in the 

possibilities, how to separate the continuum and 

liquid from each other. They proved, that this is 

possible for the solid body. The summarizing 

results more then sixth years research are presented 

by Pochyly and Malenovsky (2004) or Malenovsky 

and Pochyly (2004). The possibility for separation 

is based on the approximation of solution for 

velocity and pressure functions in the form of 

convolutory integrals. In this contribution is 

presented application on an elastic continuum. For 

testing of this possibility and proving the validity of 

this approach, was chosen cantilever beam with 

circular cross section vibrating in water. The 

objective is to determine the expressions for local 

matrices of added mass and damping of liquid and 

suggest algorithm for solution the elastic structure – 

liquid interaction.  

Similar model sample was presented by Levy and 

Wilkinson (1976). Vibration a shaft in water is 

solved as a coupled problem. Authors are mainly 

focused only on the determination of added mass. 

Only the potential flow is taken into account and 

the water is considered as ideal. The finite element 

method for the both structure and liquid is used.    

2. IDEAL LIQIUD AND BEAM 

The linear eq. of motion for beam has form 

( )
2

''''

0

sin
B B B B
S y E I y R p d

π

ρ ϕ ϕ ϕ•• + = − �  (1) 

The FEM is applied for solution. For a 

displacement of beam is valid 

( ) ( ) ( ), j jy x t w t u x=  (2) 

After the substitution to (1) is obtained 

( )
2

''''

0
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B B j j B B j j
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π
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Using integration over the length of finite element 

which is submerged in liquid is 

( )

''''

0 0

2
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From this equation are evident the expressions for 

local mass and stiffness matrices beam element. 



Other assumption is the approximation of solution 

j
w  into series of eigen shapes of vibration 

jk
v  

j jk k
w v q=  (5) 

where 1,...k n=  for n  shapes of vibration. 

Pressure is defined using variable 
k

h  and 
k

q
••

  

k k
p h q

••=  (6) 

From here for pressure is evident 
1

k jk jp h v w
− ••=  (7) 

After the treatment into do (4) is obtained 
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2

1
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s in

ij ij

E

B j B j

L

i k jk j
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π
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The local added mass matrix for ideal liquid is 

given by  

( )
2

1

0 0

sin
E

ij

L

l i k jkm R u h d dlv

π
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3. REAL LIQIUD AND BEAM 

The linear eq. of motion for beam including the 

influence of liquid has form 

2

'''' 2

20

sinB B B B

c
S y E I y R p d

x

π

ρ η ϕ ϕ•• � �∂
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∂� �
� (10) 

whereas is assumed the beams vibration in the 

direction 2. Also in this case according application 

the FEM the eq. of motion has form 

2

2
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2
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ij ij

L

B j B j i

p

m w k w R u d dlc

x

π
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Also in this case the solution 
j

w  is approximated 

into the series of finite number of eigen shapes of 

vibration 
jk

v  

For the possibility to achieve the separation liquid 

and beam from each other is suitable to assume the 

solution for velocity and pressure in form  

( ) ( )
0

t
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0

t
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After the treatment into (13) 
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It is possible the solution for velocity and pressure 

function assume in form  

( ) ( )1 2k kk a t a tα δ= +  (15) 

( ) ( ) ( )1 2 3k k kk b t b t b tβ δ δ•= + +  (16) 

If is the influence of functions 2k
a  and 3k

b  small, 

eq. (14) has form 
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With thinking of eq. (7), eq. (20) has the form 
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From eq. (18) are evident the expressions for local 

added mass and damping matrices of real liquid  
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It is evident, that real liquid has influence on mass 

and damping. 

4. MODEL SAMPLE 

The model sample is a cantilever bar in liquid. 
This model was chosen with regard to the 
possibility of comparing with an experiment. 



Scheme of this is on the Figure 2. The geometrical 

properties: 0 16.85R =  mm, 1 17.85R =  mm, 

2 50R =  mm, 1 17.85R =  mm, 0 1100L =  mm, 

1 1000L =  mm.  

The results of the model task are only for matter – 
of - fact purposes and that is to present the 
possibilities the computational modelling. The 
whole analysis is carried out only for the first shape 
of vibration. The real and ideal liquids were 
assumed for computational analysis. On Figure 3 is 
drawn velocity distribution for both liquids. The 
dependence of the bar eigen frequencies in liquid 
with the different heights are drawn in Figure 4. 

 

 
 

Figure 1: Scheme of co ordinate system 

 

 
 

Figure 2: Scheme of model task 

5. CONCLUSION 

In this contribution is presented approach to the 

composition of local added matrices of liquid. They 

are assumed two models of liquids, ideal and real. It 

is possible to use, the presented approach to the 

solution, for the continuum with large displacement 

and large constrains. For the general, the algorithm 

is as follows:  

1. All range in frequency or time domains is 

divided into finite number of steps. 

2. It is provided the modal behavior analysis 

of individual continuum for finite number of steps 

for geometry configuration.  

3. Analysis of individual liquid with the 

boundary conditions which are given by the chosen 

eigen shape of vibration. This step is repeated until 

the finite number of eigen values is achieving. From 

each step, the velocity and pressure field for given 

continuum position, is obtained.   

4. On behalf of velocity and pressure field on 

continuum surface are calculated the forces which 

impacted the continuum. After this are calculated 

the added matrices from liquid influence. In this 

step are created the global added matrices for given 

shape of vibration and given vibrating position.  

5. Interpolation analysis of individual 

continuum with including the global matrices from 

analysis of individual liquid (see step 4).  

 
It is necessary the comparison with experiment, 

because this approach to analysis is new. This time 
are prepared 5 types of vessels with different outer 
diameter with centered beam submersed into the 
water with different high of water. 
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Appendix 

Base functions 
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Figure 3: Velocity distribution on the beam 

 

Figure 4 Dependence of eigen frequency on the 
height of liquid  


