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ABSTRACT 
Aeroelastic analysis of a swept wing containing 

cubic and freeplay nonlinearities is investigated. 
Previously developed aerodynamic model is modified 
for unsteady subsonic compressible flow using a well 
known compressibility correction factor for some of 
its terms. Applying this model in Lagrange equations 
and using strip theory and assumed modes, governing 
equations of aforementioned aeroelastic system are 
derived. For the sake of verification, the numerical 
solution results of derived equations are compared 
with experimental data for flutter speeds of some test 
cases. This comparison indicates a good agreement. 
Finally, dynamical responses of a wing containing 
either cubic or freeplay nonlinearity are obtained 
from the numerical results of equations developed 
from unmodified and modified aerodynamic models in 
order to investigate the different outcomes.   

1. INTRODUCTION 

Aeroelasticity is the science concerned with the 
interaction between the deformation of an elastic 
structure and acting aerodynamic loads. Calculation 
of instability boundary is one of the main aeroelastic 
problems and many methods have been employed to 
determine this aeroelastic instability boundary. Since 
combination of CFD and FE methods as cumbersome 
and time consuming procedures are needed to achieve 
the full and almost exact solution of the governing 
equations of an aeroelastic system in all air flow 
regimes, application of analytical aerodynamic model 
for the certain conditions of flows such as unsteady 
incompressible and compressible ones to simplify the 
aeroelastic equations is very favorable.  

Governing aeroelastic equations for a 2-dof airfoil 
in an unsteady incompressible flow are derived by 

Theodorsen (1935) in the frequency domain ignoring 
nonlinearities. Also, governing aeroelastic equations 
of a 2-dof airfoil in an incompressible flow are 
presented by Fung (1969) in the time domain. These 
equations are solved via a numerical solution by Lee 
and Le Blanc (1986). Lee et al. (1998) used a 
standard fourth-order Runge-Kutta scheme to 
integrate the system of equations of a two dof airfoil 
containing cubic nonlinearity for given initial 
conditions in order to solve equations of motion in the 
time domain. In the issue of aeroelastic analysis of a 
wing in an incompressible flow, an experimental and 
linear analytical study of the flutter of sweptback 
cantilever wing in the frequency domain were 
presented by Barmby et al. (1950). Afterwards, many 
researchers have been studied the aeroelasticity of the 
wing. Recently, Ghadiri and Razi (2007) investigated 
the limit cycle oscillations of unswept rectangular 
cantilever wings containing cubic nonlinearity in an 
incompressible flow. They verified their formulation 
with the experimental data. This study is followed by 
the investigation of linear and nonlinear aeroelastic 
analyses of a swept wing in an incompressible flow 
and in the time domain (Razi and Ghadiri, 2008). 
Equations derived in this study were developed via 
applying fourier synthesis and Duhamel superposition 
to the equations previously derived by Barmby et al. 
(1950) in the frequency domain. LCO amplitude and 
frequency of the aeroelastic system were obtained 
using harmonic balance method and forth order 
Runge-Kutta method.  

In the present work, the governing aeroelastic 
equations of a two dof swept cantilever wing with 
cubic and freeplay nonlinearity are derived through 
applying the strip theory and unsteady aerodynamics, 
and they are studied in the time domain in a 
compressible flow. In order to apply strip theory, 
mode shapes of the cantilever beam are used.  



2. AEROELASTIC SYSTEM 
Consider a two-dof swept rectangular wing rigidly 

connected to the fuselage and oscillating in pitch and 
plunge. The nondimensional plunge deflection is 
denoted by ξ, positive downward direction, and the 
pitch angle α, positive nose up, respectively. The 
sweep angle of the wing is Λ. Flow around the wing 
is assumed to be potential compressible with the 
Mach number below 0.7. In this study camber and 
thickness of the wing section are ignored.  Elastic axis 
is uniform and rectilinear. For the assumption of 
potential flow, plunge and pitch displacements are 
small. The sketch of a swept wing and its section is 
plotted in figures 1 and 2. y  is a coordinate directed 
along elastic axis and x  is positive downward and 
normal to the y  direction, while y is a coordinate 
parallel to free stream velocity direction and x is its 
Cartesian counterpart. As shown in figure 2, c, b, ah 
and xα are chord length, semi-chord length, 
dimensionless distance between elastic axis and mid-
chord and nondimensional distance between elastic 
axis and centre of mass, respectively.  

 

Figure 1: Sketch of a swept rectangular wing   

 

Figure 2: Schematic figure of the wing section 

3. MODIFIED AERODYNAMIC MODEL  
Unsteady aerodynamic model in the time domain 

for an element of a swept wing in an incompressible 
flow was derived by Razi and Ghadiri (2008) using a 
relation between Theodorsen and Wagner’s functions 
obtained by Fourier synthesis and also Duhamel 
superposition formula as follows: 
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(2) 

 
where AR and η are aspect ratio of the wing and 
nondimensional coordinate along the wing span, 
respectively. Applying the Kelvin’s circulation 
theorem for this aeroelastic system, it can be deduced 
that the vortices developed on the wing surface shed 
vortices of equal strength and opposite rotation in the 
surrounding flow in order to produce no change in the 
overall circulation. These counter-rotating vortices 
would produce an induced flow that would effectively 
change the flow field around the wing. As the wing 
oscillates, a succession of these vortices would be 
continuously formed leading to unsteady flow around 
the wing dependent on the strength and distance of 
these vortices. Ignoring these vortices, the reduced 
frequency, k, can be assumed zero. Thus C(k) or 
Theodorsen’s function will be equal to 1 and the flow 
regime correspond to this assumption called quasi 
steady flow. In this case, equations for lift and 
moment acting on an element of a swept rectangular 
wing can be written as below: 
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(4) 

Since this aerodynamic model is true in steady state 
aerodynamics, it is possible to apply Prandtl-Glaurt 
compressibility correction factor β, in order to modify 
it for obtaining aerodynamic loads acting on wing in a 
compressible flow with Mach numbers less than 0.7. 
This limitation is mainly due to highly nonlinear 
behavior of flow in transonic regime.  

21

1

∞−
=

M
β  

(5) 

where ∞M  is freestream Mach number. Comparing 
equations (1) and (2) with equations (3) and (4), it is 
obvious that all of the terms of the quasi steady 
equations are in common with the unsteady ones. 
Since these two aerodynamic models are both 
developed under linear aerodynamic theory, the 
modified quasi steady and unsteady equations can be 
superimposed. This will lead to modify only 
noncirculatory terms of the unsteady equations which 
are not concerned with the counter rotating vortices in 
the surrounding flow. Therefore, the proposed 
aerodynamic model is presented as follows for an 
element of a swept wing oscillating in an unsteady 
compressible flow: 
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4. AEROELASTIC EQUATIONS 
Like any other aeroelastic system, the well known 

Lagrange equations can be used to obtain the 
governing aeroelastic equations of aforementioned 
aeroelastic system. Assuming the rectangular wing as 
a uniform cantilever beam, its first mode shapes 
obtained from Barmby et al. can be used for plunge 
and pitch degree of freedom. In this manner, Terms 
concerned with kinetic and potential energies are 
derived easily. In order to obtain generalized forces 
corresponding to plunge and pitch displacements, 
strip theory is used for analytical aerodynamic model 
of unsteady compressible flow, equations (6) and (7).  

Inserting derived equations for kinetic and potential 
energies and also generalized forces in the Lagrange 
formulas, the governing aeroelastic equations of a 
swept rectangular wing in subsonic compressible flow 
are derived in the time domain as follows: 

( ) ( ) ,1104938
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where ξ1 and α1 are time dependent dimensionless 
plunge and pitch displacement, the prime sign denotes 
differentiation with respect to the dimensionless time 
τ, coefficients c0, c1,…, c10 and d0, d1,…, d10 are 
concerned with nondimensional parameters of the 
wing, constants of the Wagner’s function, freestream 
mach number, sweep angle and nondimensional 
parameters of the wing and also assumed mode 
shapes. They are different from the coefficients of 
previously derived equations in previous works. 
Expressions f(τ) and g(τ) are dependent on initial 
conditions, nondimensional time and constants of the 
Wagner’s function. Also, w1,…,w4 are the well known 
integral variable introduced by Lee and Leblanc 
(1986) and terms G(ξ1) and M(α1) are the functions 
representing concentrated structural nonlinearities.  



5. STRUCTURAL NONLINEARITIES 
For better understanding of the aeroelastic behavior 

of a swept wing in the speed upper than linear flutter 
boundary, it is essential to consider its aeroelastic 
nonlinearities. A comprehensive review of these 
nonlinearities includes aerodynamic and structural 
ones has been presented by Lee et al. (1999).  

Distributed structural nonlinearities governed by 
elastodynamic deformations that affect the whole 
structure are beyond the scope of this paper. In the 
other hand, in this study concentrated structural 
nonlinearities such as cubic and freeplay ones 
commonly can be found in control mechanisms or 
connecting parts of the wing. They are usually 
modeled as a spring with a nonlinear stiffness 
coefficient. Cubic nonlinearities are classified as 
being either softening or hardening. They are 
mathematically represents by following formula for 
the pitch degree of freedom (Lee et al., 1999):  

( ) 3
111 3αβαβα

αα +=M  (10) 

However, when a system contains freeplay 
nonlinearity for small displacements, the spring 
shows different behavior in compare with the time it 
is exposed to larger displacements. In other words, 
this kind of nonlinearity for the pitch degree of 
freedom can be presented by equations written below 
[refer to figure 3 for definition of parameters of 
equation (11)] (Lee et al. 1999):  
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Figure 3: Restoring moment versus pitch angle as the 
mathematical model of freeplay nonlinearity 

6. RESULTS AND DISCUSSION 
Linear aeroelastic analysis of the swept wing is 

carried out in order to verify the derived formulations. 
For this reason, experimental data for the flutter speed 
of the uniform cantilever wing of Barmby et al. 
(1950) are used. The physical characteristics of the 
tested wings and their nondimensional parameters 
have been presented in their report. The standard 4th 
order Runge-Kutta method was applied to obtain 
numerical solutions of the resulting set of first-order 
differential equations and as a result the aeroelastic 
instability boundary of the system. Experimental and 
calculated flutter speeds for seven different cases are 
given in Table 1. The flow Mach numbers in all cases 
are between 0.3 and 0.7, in compressible flow regime. 
It can be seen that this formulation provides good 
agreement with the experimental data, and the error of 
our proposed equations with the modified 
aerodynamic model compared to the experimental 
data in all seven cases is below 10 percent. In the strip 
theory approximation, the chord wise pressure 
distribution at any spanwise station is assumed to 
depend only on the downwash at that station given by 
the two-dimensional aerodynamic theory and to be 
independent of the downwash at any other spanwise 
station and it is the main reason of the difference 
between experimental and calculated data for the 
flutter speed. However, by our comparison, it is 
shown that this error can be ignored. The assumption 
of two-dimensional flow, applying only the first mode 
shape of a cantilever beam and modifying only some 
terms of unsteady aerodynamic model can be the 
other sources of error. In table 2 where the numerical 
results of governing equations developed using either 
modified or unmodified models are given, the 
effectiveness of our modification in aerodynamic 
model is obvious.  It is shown that our modification in 
aerodynamic model lowers the error of the results for 
flutter speed.   

Case 
Experimental 
flutter speed 

(m/sec) 

Calculated 
flutter speed 

(m/sec) 

Error 
(percentage) 

40A-2 69.291 71.953 +3.84 
40D-2 79.126 79.264 +0.17 
62-3 78.232 83.896 +7.24 
63-4 80.020 84.747 +5.91 
72-1 88.067 86.426 -1.86 
73-1 86.279 90.046 +4.37 
75-1 80.914 86.044 +6.34 
Table 1: Calculated and experimental results for 

flutter speed 



Case 
Calculated flutter 

speed using modified 
aerodynamic model 

(m/sec) 

Calculated flutter 
speed using 

unmodified model 
(m/sec) 

40A-2 71.953 78.482 
40D-2 79.264 87.730 
62-3 83.896 92.153 
63-4 84.747 93.382 
72-1 86.426 97.299 
73-1 90.046 101.17 
75-1 86.044 94.071 
Table 2: Calculated results for flutter speed using 

modified and unmodified aerodynamic models 

Using this formulation and applying proper 
mathematical model instead of G(ξ1) and M(α1), it is 
very easy to treat with the concentrated structural 
nonlinearity such as cubic and freeplay nonlinearities. 
Here, these structural nonlinearities are considered 
and some phenomena like limit cycle oscillations and 
divergence below linear flutter speed are observed. 
For wing containing hardening cubic nonlinearity 
(figure 4), 33 =

α
β  and 03 =

ξ
β , LCOs are seen when 

the free stream speed is beyond linear flutter speed. 
Due to the difference in flutter speed prediction 
between modified and unmodified equations, the 
unmodified equations predict different aeroelastic 
behaviors when aeroelastic nonlinearities are 
considered. For instance, in a case containing cubic 
nonlinearity (figure 4), in a flow condition where 
LCO must be predicted, unmodified equations predict 
stable oscillations. This is also true for cases with 
softening cubic nonlinearity.  

 

Figure 4: Wing tip pitch displacement versus τ  for 
case 40D-2 containing hardening cubic nonlinearity 

at 057.80=U m/sec with different aerodynamic 
models ; ..... modified,  unmodified. 

Case 

Calculated nonlinear 
flutter speed 

using modified 
aerodynamic model 

(m/sec) 

Calculated nonlinear 
flutter speed 

using unmodified 
aerodynamic model 

(m/sec) 
40D-2 77.235 85.423 
63-4 83.103 91.861 
72-1 85.112 95.901 

Table 3: Calculated results for nonlinear flutter speed 
of swept wing containing softening cubic nonlinearity 
using modified and unmodified aerodynamic models 

As seen in table 3 for tested cases with 33 −=
α

β , the 
results for nonlinear flutter speeds differ considerably 
from modified ones. 

 In this paper, different methods are used in 
nonlinear analyze of derived equations. For instance, 
see figures 5 to 7 for LCO frequency, pitch and 
plunge amplitudes, respectively. Results of harmonic 
balance (HB) method are in a close agreement with 
numerical results. The higher the order of HB 
method, the more accurate results are obtained. In this 
figures, it is obvious that the error of the results 
obtained from unmodified equations is considerable 
in comparison with modified equations solution. 
Furthermore, this conclusion is true for swept wings 
containing freeplay nonlinearity in a subsonic 
compressible flow as case 40D-2 containing freeplay 
with 25.00 == Mfα , 5.0=δ and 0=fM  in figure 8. 
Again, the unmodified equations predict stable 
situation while modified ones predict LCO. As a 
conclusion, it can be noted that the effect of this 
modification is of great importance.   

  
Figure 5: Wing tip LCO frequency (Case 40D-2): 

,  numerical result; ,  HB1; ,  HB3. 



 

Figure 6: Wing tip LCO pitch amplitude for case 
40D-2: ,  numerical result; ,  HB1;  

,  HB3; , unmodified model 

 
Figure 7: Wing tip LCO plunge amplitude for case 

40D-2: ,  numerical result; ,  HB1;  
,  HB3; , unmodified model 

 
Figure 8: Wing tip pitch displacement versus 

nondimessional time for case 40D-2 containing 
freeplay nonlinearity at 374.67=U m/sec with 

different aerodynamic models ;                                
..... modified,  unmodified. 

7. CONCLUSION 
In the current work, governing equations of a two 

degree of freedom swept wing in compressible flow 
were derived through modifying a previously 
developed aerodynamic model for incompressible 
flow using Prandtl-Glaurt compressibility correction 
factor. The presented results in this paper clearly 
showed the effectiveness of this modification to 
obtain more reliable solutions. This is not only true 
for linear analysis but also for nonlinear one.    

8. REFERENCES 
Theodorsen, T., 1935, General theory of aerodynamic 
instability and the mechanism of flutter. NACA 
technical report No. 496. 

Fung, Y.C., 1969, An introduction to the theory of 
aeroelasticity, Dover Publications, New York. 

Lee, B.H.K., LeBlanc, P., 1986, Flutter analysis of a 
two-dimensional airfoil with cubic nonlinear restoring 
force, National Research Council of Canada, 
Aeronautical Note, NAE-AN-36, NRC No. 25438. 

Lee, B.H.K., Jiang, L.Y., Wong, Y.S., 1998, Flutter 
of an airfoil with a cubic nonlinear restoring force, 
39th AIAA/ASME/ASCE/AHS/ASC structures, 
Structural Dynamics, and Materials Conf, Long 
Beach, CA, AIAA Paper 98-1725.  

Barmby, J.G., Cunningham, H.J., Garrick, I.E., 1950, 
Study of effects of sweep on the flutter of cantilever 
wings, NACA technical note 2121. 

Ghadiri, B., Razi, M., 2007, Limit cycle oscillations 
of rectangular cantilever wings containing cubic 
nonlinearity in an incompressible flow. Journal of 
Fluids Structures, 23: 665-680. 

Ghadiri, B., Razi, M., 2007, Aeroelastic Analysis of a 
Wing Containing Cubic Nonlinearity in an 
Incompressible Flow, CANCAM2007, Toronto. 

Razi, M., Ghadiri, B., 2008, Aeroelastic response of a 
swept wing with cubic structural non-linearities. 
Proceedings of the Institution of Mechanical 
Engineers, Part G, Journal of Aerospace 
Engineering, 222: No.2. (Will be published in March) 

Lee, B.H.K., Price, S.J., Wong, Y.C., 1999. Nonlinear 
aeroelastic analysis of airfoils: bifurcation and chaos. 
Progress in Aerospace Sciences, 35: 205-334. 


