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ABSTRACT 
   An approximate method is proposed for the free 
vibration analysis of a rectangular plate clamped 
along the edges of a liquid–filled semi–circular 
cylindrical vessel. The vessel is transformed into an 
equivalent rigid hexahedron vessel for a simple 
theoretical formulation. It is assumed that the plate 
is fixed at the edges of the rigid vessel and it is in 
contact with a liquid contained in the vessel. In the 
theory, the transverse dynamic displacement of the 
wet plate is expressed by using a combination of the 
dynamic displacements of a dry rectangular plate 
with unknown coefficients. The liquid motion can be 
formulated with a displacement potential, since the 
liquid is assumed to be incompressible and inviscid. 
By considering the compatibility condition and by 
applying the Rayleigh−Ritz method, the natural 
frequencies and associated mode shapes of the wet 
plate are obtained. To verify the theory, a finite 
element analysis is carried out by using the ANSYS 
code. It is verified that the theoretical method can 
predict the wet natural frequencies well with an 
excellent accuracy.  
 

1. INTRODUCTION 
Dynamic characteristics of structures in contact 

with a contained liquid are very important in 
various engineering applications. There have been 
several theoretical and experimental researches on 
the free vibration problem of rectangular plates in 
contact with a liquid in recent years. Several 
researches on a hydroelastic vibration of a single 
rectangular plate in contact with a liquid have been 
published (Robinson et al. 1990; Kwak, 1996; 
Cheung et al. 2000; Zhou et al. 2000). Dynamic 
characteristics of a submerged plate in a liquid 
medium have also been studied (Fu et al. 1987; 
Haddara et al. 1996; Liang et al. 2001; Ergin et al. 
2003; Yadykin et al. 2003).  

However, studies on a hydroelastic vibration 
analysis of a rectangular plate in contact with a 
liquid contained in an uncommon vessel are scarce 
in the literature.  Hence, a theoretical free vibration 
analysis of a flexible rectangular plate in contact 
with a liquid contained in a rigid semi−circular 
cylindrical vessel is developed here. 

2. THEORY 

2.1 Dynamic displacement of the plate 
A flexible rectangular plate in contact with a liquid 

is supported by a rigid semi−circular cylindrical 
vessel as shown in Figure 1. A plate with length L 
and width 2R, and thickness h is assumed to be 
clamped along its edges. The semi−circular 
cylindrical cavity is fully filled with an ideal liquid. 
The Rayleigh–Ritz method is introduced to obtain 
the approximate natural frequencies and associated 
mode shapes of the rectangular plate coupled with 
the liquid.  
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Figure 1: A rectangular plate in contact with a 
liquid contained in a rigid semi–circular cylindrical 
vessel. 



The wet dynamic mode shapes of the plate can be 
approximated by a combination of a finite number 
of admissible modal functions,  and 
unknown coefficients, . 
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where, 1−=i  and ω is the circular natural 
frequency of the plate. A sufficiently large finite 
enough number of terms, M and N shall be 
considered. The transverse modal function for the 
rectangular plate can be defined by a multiplication 
of the x– and y– directional admissible beam 
functions. 
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Additionally, the slopes and the displacements must 
be zero for the clamped boundary condition of the 
plate. 
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The orthogonal admissible functions satisfying Eqs. 
(3) and (4) can be selected as modal functions of a 
dry beam with clamped boundary conditions.  
Therefore, they will be written  
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where the frequency parameters mλ , nλ  and the 
other parameters mσ , nσ  are delineated in a text 
book (Blevins, 1979). 
 

2.2 Formulation for the liquid  
    As shown in Figure 1, the liquid surrounding the 
rectangular plate and the rigid semi−circular 
cylindrical vessel wall is assumed as invisid, 
irrotational and incompressible. However it is very 
difficult to describe a liquid motion in the 
cylindrical coordinates, since a singularity at r = 0 
cannot be reflected. Therefore, a liquid motion can 
be described in Cartesian coordinates by the 
Laplace equation for the velocity potential: 
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The velocity potential can be separated with respect 
to the time and the space. Thus the velocity 
potential can be replaced with the displacement 
potential φ  of Eq. (8). 
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For the formulation of the theory in Cartesian 
coordinates, the equivalent liquid depth, d is 
determined on the basis of the same liquid volume. 
 
                            /d R 4π= . (9)
 
The boundary conditions along the rigid vessel 
walls of the transformed hexahedron cavity, by 
assuring a zero liquid displacement, lead to: 
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The displacement potential of the liquid, ( )zyx ,,φ , 
satisfying the boundary conditions of Eqs. (10)–(11), 
can be written as the following: 
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The unknown coefficients,  and , can be 
determined by the boundary condition of Eq. (12).  
Therefore, the displacement potential of the liquid 
will be reduced to: 

rsB rsC
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On the other hand, as the structural displacement 
and the liquid displacement must be identical in the 
normal direction to the interface surface between 
the liquid and the plate, the compatibility condition 
at the wet surface yields: 
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Substituting Eqs. (2), (5), (6) and (17) into Eq. (18) 
results in: 
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for both sides of Eq. (19), integrations along [0, 2 
R] and [0, L] are performed for the finite Fourier 
transform. A relationship between the unknown 
coefficients  and  can be obtained by using 
the orthogonal property of the sinusoidal functions: 
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The coefficients, nsa , ns , ns  and ns can be 
obtained by a similar integration of Eqs. (23)–(26). 
Eventually, the displacement potential of the liquid 
satisfying all the liquid boundary conditions and the 
compatibility condition will become: 
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2.3 Rayleigh−Ritz method 
A sufficiently large finite number of terms, N and 

M, are considered to obtain a converged solution, 
and a vector q of the unknown parameters is defined 
as, 
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The reference kinetic energy,  of the plate can be 
obtained by using the orthogonal property of the 
modal functions of a clamped dry beam: 
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where ρ  is the mass density of the plate. The 
matrix Z of Eq. (31) will be an MN MN×  diagonal 
matrix and it can be written as: 
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Similarily, the indices j and k also indicate the j-th 
mode in the x–direction, and the k-th mode in the y–
direction of the admissible functions, respectively. 

The maximum potential energy V of the 
rectangular plate can be computed by integrating 
the derivatives of the admissible modal functions: 
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where / ( )3D E h 12 1 2μ= −  is the flexural rigidity 
of the rectangular plate; μ and E are the Poisson's 
ratio and the modulus of elasticity, respectively. 
Inserting the admissible functions described in Eqs. 
(2), (5) and (6) into Eq. (33) gives the maximum 
potential energy of the rectangular plate as a matrix 
form: 
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where U is also a square matrix which can be 
derived as: 
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The apostrophe in the above equations indicates a 
derivative with respect to the corresponding 
variable. The coefficients with respect to the y–
diection can also be similary defined. 

The relationship between the reference kinetic 
energy of each mode multiplied by its square 
circular frequency and the maximum potential 
energy of the same mode is used to find the natural 
frequencies of the dry plate. The Rayleigh quotient 
for the plate vibration in the dry condition is given 
as . Minimizing the Rayleigh quotient with 
respect to the unknown parameters q, the Galerkin 
equation can be obtained: 
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On the other hand, the reference kinetic energy of 
the liquid can be evaluated from its boundary 
motion.  
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where oρ  is the mass density of the contained 
liquid.  Substituting Eqs. (2), (5), (6), and (29) into 
Eq. (42), we obtain: 
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Finally, the Galerkin equation can therefore be 
obtained for the wet case: 
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The natural frequencies of the rectangular plate in 

contact with the liquid can be obtained from the 
determinant of Eq. (45). 

 

3. EXAMPLE AND DISCUSSION 

3.1 Verification of the approximate method 
The eigenvalues of Eq. (45) were extracted, on the 
basis of the analysis, in order to obtain the natural 
frequencies of a rectangular plate in contact with a 
liquid contained in a semi−circular rigid cylindrical 
vessel. A commercial software, Mathcad (version 
2000 Professional) was used for the calculation. The 
frequency equation derived in the previous sections 
involves double infinite series of algebraic terms. 
The series expansion terms r and s were set at 50, 
and the number of admissible functions is m = 10 in 
the x–direction and n = 10 in the y–direction 
respectively, to obtain a converged solution. 

In order to check on the validity of the proposed 
theory, a finite element analysis was also carried out 
for the same liquid–coupled system by using a 
commercial computer code, ANSYS (release 10.0). 
A finite element model was constructed with the 
same plate geometry, boundary conditions and 
material properties used in the theoretical 
calculation. The dimensions and physical properties 
of the rectangular plate and the liquid are listed in 
Table 1.  

 
 

Dimension or properties Value 
Width of plate 360 mm 
Length of plate 480 mm 

Thickness of plate 3 mm 
Poisson’s ratio of plate 0.3 

Young’s modulus of plate 69.0 GPa 
Density of plate 2700 kg m−3 
Density of liquid 1000 kg m−3 

Table 1: Dimensions and properties of the system. 

 



The viscosity and compressibility of the liquid were 
neglected in both the theoretical calculation and the 
finite element analysis. 
Finite element analysis using a commercial 
computer code, ANSYS software, was carried out to 
obtain the natural frequencies and mode shapes of 
the rectangular plate in contact with the liquid.  A 
three–dimensional finite element model was 
composed of three–dimensional contained liquid 
elements (FLUID80) and elastic shell elements 
(SHELL63). The liquid movement along the rigid 
walls was restricted to the normal direction only, in 
order to realize Eqs. (10)–(12). The displacement of 
the liquid element nodes adjacent to the surface of 
the wetted rectangular plate coincided with that of 
the rectangular plate so that the finite element 
model could simulate Eq. (18).  
The rectangular plate was divided into 1600 elastic 
shell elements with the same size, and the liquid 
region of the finite element model was segmented 
into 25600 fluid elements. A clamped boundary 
condition along the plate edges was applied in the 
finite element model by constraining all the 
displacements and rotations. The number of 50 
modal frequencies was extracted in the finite 
element analysis and the associated mode shapes 
plotted, by employing the Block Lanczos method.  
 

3.2 Comparison of the results 
The theoretical natural frequencies of the 
rectangular plate are listed in Table 2 and compared 
with the FEM results for the dry condition, and in 
Table 3 for the wet condition. The discrepancy 
between the theoretical and FEM results is less than 
0.3% within the 12th serial mode for the dry 
condition. This result shows that a combination of 
the dry beam modes can approximate the plate 
mode shapes excellently for the dry rectangular 
plate with clamped boundary conditions. 
 

Mode  Natural frequency (Hz) 
m’ n’ ANSYS Theory Error (%)
0 0 161.7 161.8 0.06 
0 1 271.2 271.4 0.07 
1 0 380.4 380.7 0.08 
0 2 451.6 452.0 0.09 
1 1 481.3 481.9 0.12 
1 2 651.7 652.9 0.18 
0 3 697.9 698.6 0.10 
2 0 713.0 713.7 0.10 
2 1 810.1 811.5 0.17 
1 3 890.2 892.3 0.24 
2 2 974.1 976.8 0.27 
0 4 1008.3 1009.6 0.13 

Table 2: Natural frequencies of the dry clamped 
rectangular plate. 

 
Mode  Natural frequency (Hz) 

m’ n’ ANSYS Theory Error (%)
0 1 69.2 69.7 0.72 
1 0 114.8 114.0 – 0.70 
0 2 147.1 147.9 0.54 
1 1 165.2 166.6 0.84 
1 2 251.5 254.2 1.06 
2 0 259.8 262.8 1.14 
0 3 265.9 267.6 0.64 
2 1 323.8 328.4 1.40 
1 3 376.2 380.3 1.08 
2 2 409.3 416.1 1.63 
0 4 438.9 441.9 0.68 
3 0 491.2 498.0 1.36 

Table 3: Natural frequencies of the clamped 
rectangular plate in contact with water filled with a 
semi−circular cylindrical vessel. 

 
The indices m’ and n’ in Tables 1 and 2 indicate the 
number of nodal lines in the y– and x– directions, 
respectively. It is found that the theoretical natural 
frequencies agree excellently with the finite element 
results within a 2 % discrepancy range for the wet 
case. It was observed that most of the theoretical 
natural frequencies slightly overestimate the FEM 
results.  Therefore, an approximation based on the 
equivalent depth can be useful in engineering 
applications. The fundamental natural frequency of 
the wet plate has a mode with m’ = 0 and n’ = 1 
instead of a mode with m’ = 0 and n’ = 0 so that the 
liquid volume can be conserved. Also we observed 
that the natural frequency of the fundamental wet 
mode decreased approximately by 25% of that of 
the corresponding dry mode due to the added mass 
effect of the liquid.  

The typical wet mode shapes of a wet rectangular 
plate are illustrated in Figure 2. It was observed that 
the wet mode shapes of the higher modes, such as 
the 6th, 7th, 8th and 10th modes, are distorted from 
the classical dry mode shapes of a clamped 
rectangular plate.  

4. CONCLUSIONS 
An analytical method based on the Rayleigh 
−Ritz approach to calculate approximate 
natural frequencies of a rectangular plate in 
contact with a bounded liquid was developed. 
The wet dynamic modal functions of the plate 
were expanded in terms of the finite Fourier 
series for a compatibility requirement along the 
contacting surface between the plate and the 
liquid. The proposed analytical method was 
verified by observing an excellent agreement 
with three–dimensional finite element analysis 



results. It was found that the wet natural 
frequencies decreased owing to the added mass 
of the liquid. 
 
 

 
(1st mode, 69.2 Hz)          (2nd mode, 114.8 Hz) 

 

 
(3rd mode, 147.1 Hz)         (4th mode, 165.2 Hz) 

 

 
(5th mode, 251.5 Hz)         (6th mode, 259.8 Hz) 

 

 
(7th mode, 265.9 Hz)         (8th mode, 323.8 Hz) 

 

(9th mode, 376.2 Hz)         (10th mode, 409.3 Hz) 
 
Figure 2: Mode shapes of the rectangular plate in 
contact with water filled in the rigid semi–circular 
cylindrical vessel (ANSYS results). 
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