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Mechanics of Inflatable Fabric Beams
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Summary
In this paper we present a summary of the behaviour of inflatable fabric beams.

Analytical studies on inflatable fabric beams are presented and inflatable fabric
beam finite elements are described. The stiffness matrixes take into account the
inflation pressure. Shakedown analysis is used to calculate limit loads of inflatable
fabric beams. Results on the dynamic behaviour of inflatable beams are finally
displayed.

Introduction
The aim of the paper is to display the mechanics of inflatable fabric beams, and

in particular results on the deflections for a given bending load, collapse loads, and
dynamic behaviour of beams. Two kinds of beams are studied: panels and tubes.

The first section is concerned with deflections under static loading. The first
papers [1], [2], dealing with beam theory applied to inflatable structures, suppose
an Euler-Bernoulli behaviour, which doesn’t let appear explicitly the pressure in the
formulae giving the deflections. In our opinion, the inflation pressure must appear
in the stiffness of the inflated beam. A new theory has been recently built following
the hypothesis that equilibrium equations must be written in the deformed state
and that Timoshenko’s assumptions must be used to describe the kinematics of the
beam. Analytical formulae have been established for simply supported or cantilever
beams and take into account the internal pressure. They can be found in [3] for
inflated panels and in [4] for inflated tubes.

The second section of the paper is devoted to construct inflatable beam finite el-
ements able to give accurate values of the displacement field for hyperstatic beams
and also for structures made of inflatable beams. For inflatable panels, the com-
pliance matrix of a cantilever-inflated panel is the sum of the yarn and beam com-
pliances [3]. The stiffness matrix depends on the inflation pressure and is simply
obtained by the usual theory of the equilibrium FEM [5]. For tubes problems the
effects of large rotations and shear deformation must be added, but the final result
[6] is similar to the previous ones. Results given by the tube finite elements are
compared to results given by 3D membrane finite elements and to experiments.

In the third section, we show that one can make an analogy between plastic
hinges and pneumatic hinges which arise in inflatable beams. Limit bending mo-
mentum is given and collapse loads of inflatable beams are calculated by means of
the usual theorems of limit analysis.
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In the last section of the paper, we deal with the first results on the dynamic
behaviour of inflatable tubes. For isostatic configurations, analytical formulae may
be derived, and show that frequencies depend lightly on the inflation pressure. A
continuous element is described and comparisons between theoretical and experi-
mental results are displayed.

Analytical deflections of inflatable beams
In this section, we consider, as the first example, the linearized problem of an

inflated cantilever beam under bending. The beam is made of a cylindrical mem-
brane; its reference length is �o, its reference radius Ro and its reference thickness
ho. The beam is built-in at end X = 0, subjected to an internal pressure p and a
transverse force Fy at end X = �o. P is the global load due to the pressure applied
at the ends of the beam; kGS0 is the shear coefficient. Deflection and rotation are
denoted by V and θ . From the equilibrium equation and the boundary conditions,
one readily gets [6]:
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The solution is linear with respect to force F, yet non linear with respect to the
pressure. First, the pressure appears in the denominators of the right-hand sides of
(1) and (2). Second, the reference dimensions �o, So, and Io themselves depend on
the pressure; however, further numerical results show that this dependence may not
be too strong.

If the internal pressure is zero, these relations give the well-known results for
the Timoshenko beam model. However, contrary to a classical beam, here the in-
flatable beam is made of a membrane, so the pressure cannot be equal to zero for the
beam not to collapse. The influence of the internal pressure on the beam response
is clearly shown in the previous relations: the inflation amounts to strengthen the
Young modulus and the shear modulus. In particular, when p tends to infinity, so do
the equivalent material properties and the deflection and the rotation are identically
zero.

Finite element for static analysis of inflatable beams
A tube finite element is now developed. This time the tube is modeled as a

straight beam of length �, radius R, section area S, and second moment of area I.
It is assumed that the beam undergoes axial stretch and bending in the plane, the
bending stiffness is characterized by EI and the shear effect by a factor denoted
kGS. As in 3D analysis, use is made again of the virtual power principle, which is
written in terms of Lagrangian variables. However, there are two differences here:
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• The choice of the Timoshenko kinematics to describe the real and virtual
displacement fields,

• And the linearization of the discretized equations around a prestressed state,
which corresponds to the preliminary inflation of the beam.

The resulting stiffness matrix contains the material and the geometric matrices,
including the presence of the internal pressure. In the sequel, the computations
are carried out using a 2-node element, with two degrees of freedom at each node
(deflection v and rotation θ ) interpolated by a cubic shape function.
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where φP has been introduced for convenience:
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Shakedown analysis
Shakedown analysis of plastic beams is well known. When plasticity appears

on the inner or outer fibers of a beam, the load, which gives the beginning of plas-
ticity, seems to the wrinkling load of an inflated beam. One can define M0, the
maximum elastic momentum (equivalent to the momentum which gives the wrin-
kle of an inflatable beam). When the load is increased, a plastic zone grows until a
plastic hinge appears and the section of the beam is entirely plastified. In the case
of inflatable beams, we have the same situation: the stress falls in the fabric until
the collapse load. The collapse loads of inflatable beams are therefore given by the
same formulae that those of plastic beams provided that the total or plastic bending
momentum M1 is well defined for inflatable beams. This limit momentum has been
defined for inflatable panels in [3].

In the case of inflatable tubes, Comer & Levy [1] have supposed that this bend-
ing momentum is obtained when the stress is nil in the entire tube, except at a point
of the generative of the tube. Our experiments have shown that collapse appears
when only half of the tube section is submitted to zero normal stress. This ex-
perimental assumption will be traduced in the following manner: we will suppose
that the collapse load is obtained when the stress distribution has the shape defined
below.

We will therefore suppose that the bending momentum is given by:

M1 =
pπR3

4
(5)
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Figure 1: Stress distribution in a tube at its collapse load

Experiments have been done on inflated panels and tubes for three kinds of bound-
ary conditions (simply supported at the two ends, simply supported at one end and
clamped at the other end, and finally clamped at the two ends) and for various
values of internal pressure. Results are given figure 2.

Figure 2: Comparison between theoretical and experimental results

Dynamics of inflatable beams
By introducing inertia effects in the linearized beam equations [7], one gets:

ρ0S0V̈ − (P+KGS)V 2
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−
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We have chosen to deal the dynamic behaviour of beams by means of the contin-
uous element method, which has the main advantage to lead to an exact solution.
We will construct a dynamic stiffness matrix depending on the circular frequency
ω , which connects the vector of the generalized displacements (transverse displace-
ment V , cross-sectional rotationθ ) to the vector of the generalized loads (shear load
T , bending momentum M). The expression of the dynamic matrix can be found in
[7], and the natural frequencies of vibration are given by :
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Experiments have been done to detect the natural frequencies of an inflatable sim-
ply supported beam. They are displayed in next Table:

Table 1: Natural frequencies – experiment
Pressure (kPa) 50 75 100 125

f1 (Hz) 18.90 19.41 19.96 20.63
f2 (Hz) 57.53 59.55 60.71 63.00
f3 (Hz) 109.50 112.72 114.68 119.00

The exact solutions calculated by equation (8) are displayed below:

Table 2: Natural frequencies – exact solutions
Pressure (kPa) 50 75 100 125

f1 (Hz) 16.68 17.12 17.41 17.70
f2 (Hz) 58.60 60.37 61.70 63.00
f3 (Hz) 112.22 116.01 119.09 122.12

One can see that the inflation pressure lightly increases the values of the fre-
quencies. A good agreement between theory and experiment is once again found.

Conclusion
Inflatable fabric prototype beams are studied. Deflections are given by ana-

lytical formulae for isostatic configurations for panels and for tubes. The inflation
pressure appears in the solution. Inflatable fabric beam finite elements are con-
structed. The stiffness matrixes take into account the inflation pressure. We take
advantage of an analogy between plasticity and inflatable behaviour to use shake-
down analysis in order to calculate limit loads of inflatable fabric beams provided
the limit momentum is well defined. First results on the dynamic behaviour of an
inflated beam are finally shown. Comparisons between experimental and numeri-
cal results prove the accuracy of shakedown and finite element analysis for solving
problems of inflatable fabric beams.
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