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Summary
In this paper, a method for performing fatigue crack propagation analyses based

on a temporal multiscale scheme is presented. Although plastic deformation around
the region of crack tip occurs when a cracked structure is subject to a fatigue load,
many fatigue crack propagation analyses have assumed linear elasticity. The total
number of load cycles may be in the range of 103 ∼109. It is computationally too
intensive to follow the nonlinear deformation histories during every load cycle. In
proposed temporal-multiscale approach, detailed elastic-plastic analysis performed
to follow the deformation histories during a load cycle. It is called “micro-temporal
scale” analyses. Analysis based on “macro-temporal scale” is carried out and a
hundreds of load cycles are skipped. Then, the “micro-temporal scale” analysis is
performed again. The “macro-temporal scale analysis” follows.

Multi-scale analyses have attracted many researchers and engineers in the field
of computational solid mechanics. Numerical homogenization technique (see [1,
2, 3] for example) based on two-scale representation has been applied to many
problems with assuming that the micro-structure of solid be spatially periodic. The
concept of temporal multi-scale analysis was recently proposed by Fish and Oskay
[4] and Yu and Fish [5].

In present research, our goal is to perform fatigue crack propagation analyses.
A simple temporal-multiscale scheme that enables us to skip many load cycles has
been developed. It is implemented in a finite element program and some prelim-
inary example problems were solved. In this paper, the outlines of the temporal
multi-scale approach to the fatigue crack propagation analysis are presented.

Temporal Multi-Scale Formulation
A physical quantity under a fatigue loading φ is described as a function of

spatial coordinates x and time t and is written to be:

φ = φ ζ (x, t) (1)

Here the superscript ζ indicates that the quantity φ is periodic or almost periodic
in temporal scale. If φ = φ ζ (x, t) were periodic in temporal scale, it satisfies the
following relationship.

φ = φ ζ (x, t) = φ (x, t,τ) and φ (x, t,τ +κ) = φ (x, t,τ) (t = ζτ +c) (2)
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where τ and t are the fast and slow temporal scales. κ represents the duration of one
load cycle in the fast temporal scale τ . ζ represents the duration of one load cycle
in the slow temporal scale t. c is a constant. Functions in the form of equation (2) is
“periodic” as depicted in Fig. 1 (a). However, in many cases, although the function
has a periodic nature it often changes gradually, as shown in Fig. 1 (b). Such a
function is called an almost periodic function in temporal scale, and is written to
be:

φ = φ ζ (x, t) = φ (x, t,τ) and φ (x, t,τ +κ) = φ (x, t,τ)+ φ̄ (x, t)ζκ (3)

φ̄ (x, t) represents slow change in physical quantity φ and ζκ is the duration of one
load cycle in the slow time scale t.

(a) (b)

Figure 1: The behaviors of (a) periodic function and (b) almost periodic function

Since the average value and the amplitude of applied cyclic load may gradually
change, the physical quantity is considered to be an almost periodic function. Thus,
we write the physical quantity in the following fashion.

φ ζ (x, t) = φ (x, t,τ) = M (φ (x, t,τ)) (x, t)+ φ̃ (x, t,τ) (4)

where M (φ (x, t,τ)) (x, t) is the value that only depends on the macro-temporal
scale t, which corresponds to the mean value of oscillatory behavior of φ ζ (x, t).
φ̃ (x, t,τ) is introduced to represent the oscillating part of the quantity φ ζ (x, t).
M (φ (x, t,τ))(x, t) is defined by the “almost periodic temporal homogenization”
(APTH) operator (see [4]), as:

dM (φ (x, t,τ)) (x, t)
dt

=
1
κ

∫
κ

φ̇ (x, t,τ)dτ (5)

Here κ denotes a period of oscillation in the micro-temporal scale τ .

Governing Equations and BVP in the Temporal Multiscale
Formulation

In the temporal multiscale formulation, the displacements, strains, plastic strains,
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stresses, body forces and applied tractions are denoted as follows.

Displacements: uζ
i (x, t) = ui (x, t,τ) = M (ui (x, t,τ)) (x, t)+ ũi (x, t,τ) (6)

Strains: εζ
i j (x, t) = εi j (x, t,τ) = M (εi j (x, t,τ)) (x, t)+ ε̃i j (x, t,τ) (7)

Plastic strains: ε pζ
i j (x, t) = ε p

i j (x, t,τ) = M
(

ε p
i j (x, t,τ)

)
(x, t)+ ε̃ p

i j (x, t,τ) (8)

Stresses: σζ
i j (x, t) = σi j (x, t,τ) = M (σi j (x, t,τ))(x, t)+ σ̃i j (x, t,τ) (9)

Body forces (bζ
i (x, t)), applied tractions on ∂ΩP (P̄ζ

i (x, t)) and prescribed dis-

placements on ∂Ωu (ūζ
i (x, t)) are also written in the same manner.

The governing equations for the boundary value problem are written using the
mean values such as M (σi j (x, t,τ)) (x, t) and the oscillating part such as σ̃i j (x, t,τ)
separately. Elastic-plastic constitutive equation is usually written in a rate form.
The rate form stress-strain relationship in terms of macro- and micro- temporal
scales, as:

∂M (σi j (x, t,τ)) (x, t)
∂ t

= Ei jk�

{
∂M (εk� (x, t,τ))(x, t)

∂ t
− ∂M

(
ε p

k� (x, t,τ)
)
(x, t)

∂ t

}
(10)

∂ σ̃i j (x, t,τ)
∂τ

= Ei jk�

{
∂ ε̃k� (x, t,τ)

∂τ
− ∂ ε̃ p

k� (x, t,τ)
∂τ

}
(11)

where Ei jk� are the components of fourth order tensor that represent the Hooke’s
law. Evolution equation for the plastic strains can be written in the following form.

∂ ε̃ p
i j

∂τ
= Fi jk�

(
M

(
σ ′

mn

)
, σ̃ ′

mn,λ1,λ2, · · ·
) ∂ ε̃ ′

k�

∂τ
(12)

Fi jk�

(
M (σ ′

mn) , σ̃ ′
mn,λ1,λ2, · · ·

)
are the functions of deviatoric part of stresses M (σ ′

mn),
and σ̃ ′

mn, and of strain history parameters λ1,λ2, · · ·. The functional shapes of
Fi jk�

(
M (σ ′

mn) , σ̃ ′
mn,λ1,λ2, · · ·

)
depend on the type of constitutive law which is

adopted.

The most important outcome is in the evolution equation for the plastic strains
in the macro-temporal scale t. It is derived through averaging processes by using
the properties of the APTH operator that is shown in equation (5).

∂M
(

ε p
i j

)
∂ t

= N
[
ε̃ p

i j (x, t,κ)− ε̃ p
i j (x, t,0)

]
(13)

where N is the number of cycles per unit time under the macro-temporal scale t.
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Table 1: BVPs under the micro- and macro-temporal scales
 Micro-temporal scale Macro-temporal scale 
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Figure 2: The outline of temporal multiscale algorithm (two-step algorithm)

Solution Algorithm of Temporal Multiscale Analysis
As seen in previous section, the rate from constitutive equations and the evolu-

tion equations for the plastic strains are established for macro- and micro-temporal
scales, as summarized in Table 1 along with the boundary conditions and body
forces. Thus, the boundary value problem is solved by the finite element method.
A micro-/macro-temporal scale coupling algorithm can be constructed as shown in
Figure 2. A cyclic load cycle is solved and the histories of nonlinear deformation
are stored. Then, the rates of plastic strains with respect to the macro-temporal
scale are calculated by equation (13). The plastic strain increments are treated as a
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initial strain when the boundary value problem with respect to the macro-temporal
scale is solved.

Demonstration Problems
In this section, the results of some simple demonstration problems are pre-

sented. A bar is subject to almost periodic fatigue loadings. One has gradually
increasing amplitude of oscillating applied stress and the mean value is zero. The
other case has a constant amplitude of oscillating applied stress and the mean value
gradually increases. They are shown as shown in Figure 3. The J2-Flow theory is
adopted for the elastic-plastic analysis. The Young’S modulus and yield stress are
set to be 10000 MPa and 100 MPa. The linear hardening low is assumed and the
hardening modulus is set to be 100 MPa.

(a) (b) 

Figure 3: The almost periodic fatigue ladings [(a) gradually increasing amplitude
and (b) gradually increasing mean value]

(a) (b)
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Figure 4: Computed strain and plastic strain for the cases of (a) gradually increasing
amplitude and (b) gradually increasing mean value of almost periodic fatigue loads.
[Lines for strain (+) and strain (-) indicate the highest and the lowest strains in a
load cycle that were computed an ordinary time marching scheme with following
every load cycle. Line of Eq. Pl. strain shows the equivalent plastic strain that is
also computed by an ordinary scheme. Dotted lines and filled circles are the ones
computed by the temporal multiscale scheme.]
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Ordinary incremental analyses which follow entire loading histories were per-
formed to obtain reference solutions. The results of present temporal-multiscale
analyses compared favorably with the reference solutions.

Concluding Remarks
In this paper, a simple methodology to perform temporal-multiscale analysis

under fatigue loadings is presented. The results of simple one dimensional prob-
lems are presented. The authors are now conducting trials to develop a successful
strategy to perform the temporal-multiscale analyses along with the nodal release
technique that is often used in crack propagation analyses.
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