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Summary

In this work we consider the numerical problem of reconstruction of an unknown char-
acteristic transient thermal source inside a domain. The finite differenceθ-scheme applied
to the transient heat conduction equation leads to a model based on a sequence of modified
Helmholtz equation solutions. For each modified Helmholtz equation the characteristic
star-shape source function may be reconstructed uniquely from the Cauchy boundary data.
Using representation formulae we establish a reciprocity functional mapping functions that
are solutions of the modified Helmholtz equation to their integral in the unknown charac-
teristic support.

Introduction

Transient Heat Problem

The direct transient heat source initial boundary value problem consists in finding
u(x, t) with (x, t) ∈Ω× [0,T),T > 0 given a boundary inputg(x, t) with (x, t) ∈ Γ× [0,T),
an initial inputu0(x) with x ∈ Ω and a source distributionf (x, t) with (x, t) ∈ Ω× [0,T)
that verifies the problem :

(Pg, f )





∂u
∂t −∆u = f , in Ω× [0,T);
u = u0, in Ω×{0};
u = g, on Γ× [0,T).

(1)

It is well known that this direct problem is well posed with unique solution for regular data.

The inverse source problem that we address consists in the recovery of the source
f (x, t) ∈ Ω× [0,T), knowing the initial data inΩ and the Cauchy data in the boundary
Γ for t ∈ [0,T). We consider that the unique information available is given by only one
measurement, say, the Neumann boundary measurements

∂νu = gν, on Γ× [0,T). (2)

corresponding tog = 0, on Γ× [0,T), whereν is the boundary domain exterior normal.

The θ-scheme and the modified Helmholtz model for the transient heat Problem

One type of sources that can be uniquely reconstructed from Neumann boundary mea-
surements in a model based on Poison equation with the Laplace operator∆, are star-
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shaped characteristic sources. This uniquenes resulted may be easily extended to a modi-
fied Helmholtz equation based model and we present now an algorithm for moving transient
source reconstruction in the heat equation. Let the source be given by

f (x, t) = χω(t)(x), in Ω× [0,T) (3)

whereω(t), t ∈ [0,T) is a representation of the star shape source boundary. For one -
dimensional problems it is a set with two points. For two or tree-dimensional problems it is
a moving Lipschitz parametric curve or surface in which the parameter has been omitted.
With this in mind, we may rewrite the transient problem as

(Pg,χω)





∂u
∂t −∆u = χω(t)(x), in Ω× [0,T);
−∆u0 = χω(0)(x), in Ω×{0};
u = g, on Γ× [0,T).

(4)

with transient Neumann historygν as in(2).
The initial u0 can be determined as solution of the Poisson problem−∆u0 = χω(0), if the
initial shapeω(0) is known. If it is not known, then we can use the Cauchy data,g(0) and
gν(0), to solve the static inverse problem (cf. [1]). Consider a partition of the time interval

[0,T] into N subintervals of lengthτ > 0. Let {t0, t1, t2, ..., tn, tn+1, ...tN} be the knots of this
partition, with t0 = 0 andtN = T. For tn < t < tn+1,n = 0,1,N−1 we use theθ-scheme
approach for the discretization of the (4). Define, for a functionh(x, t), a linearθ weighted
approximationδθ(h)(x) by

δθ(h)(x) = θh(x, tn+1)+(1−θ)h(x, tn) (5)

We start by approximating the time derivative∂u
∂t in (4) by a first order forward difference

∂u
∂t

(x, t)∼= u(x, tn+1)−u(x, tn)
τ

, x∈Ω (6)

the diffusion and the characteristic source respectively by

∆u(x, t)∼= δθ(∆u)(x), x∈Ω (7)

χω(t)(x)∼= δθ(χω)(x), x∈Ω (8)

By denotingun+1 with x ∈ Ω the approximate solution at the time steptn+1 for this
equation may be written as

(Hn+1
g,χω)




−∆un+1 +λun+1 = fn +χω(tn+1), in Ω;
un+1 = g(tn+1), on Γ;
∂νun+1 = gν(tn+1), on Γ.

(9)
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for n= 0,1,2, ...,N. Hereλ = 1
τ θ and fn =

un+τ(1−θ)∆un+τθχω(tn)(x)
τθ . Note that∆un+χω(tn) =

∂un

∂t and for the initial framework

(H0
g,χω)




−∆u0 = χω(0)(x), in Ω;
u0 = g(0), on Γ;
∂νu0 = gν(0), on Γ.

(10)

obtainingu0 by solving the static inverse problem.

The sequence of modified Helmholtz source inverse problems (9) may be solved re-
constructing the star-shape sourceχω(tn)(x) for the time knots sequence, and shows its
movement in the domainΩ.

Reciprocity functional

The reciprocity functional for the Helmholtz Problem depends only on boundary val-
ues of the solution and its properties are derived from elementary properties of the Green’
theorem. Letv in be the space of Helmholtz functionsHλ(Ω) = {v : −∆v+ λv = 0}. The
reciprocity functional [1] for the Cauchy data in the sequence of Helmholtz problems (9) is

Rλ
fn+χω(tn+1)

(v) =
∫

Γ
(vgν(tn+1)−g(tn+1)∂νv)ds,( for v∈ Hλ(Ω)). (11)

It is a direct consequence of Green’s theorem that

Rλ
fn+χω(tn+1)

(v) =
∫

Ω
fnvdx+

∫

Ω
χω(tn+1)vdx,( for v∈ Hλ(Ω)). (12)

The reciprocity functional can be calculated for different test functionsv ∈ Hλ(Ω)
using the Cauchy data of the respective modified Helmholtz problem or alternatively by
the source function. Since at each timetn+1, fn may be calculated by using results from
time tn, with a procedure similar to that adopted in [1] to established a system of nonlinear
equations for the source reconstruction inverse problem, we may form the sequence of
moving sources reconstruction solutions for the system in (9).

One dimensional numerical simulations for the modified Helmholtz problem

The direct Helmholtz source problem consists in findingu given a boundary input
g∈ H1/2(Γ) and a source distributionχω that verifies the Helmholtz-Dirichlet problem :

(Hλ
g,χω)

{ −∆u+λu = χω, in Ω;
u = g, on Γ.

(13)

It is well known that this direct problem is well posed with unique solution forλ > 0. The
inverse source problem consists in by knowing the Cauchy data in the boundaryΓ, that is
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Figure 1: Slab modified Helmholtz equation solutions for
√

λ = κ =
0,0.1,0.5,2,5,7,10,12 .

the Dirichlet to Neumann map in at least one Dirichlet datumg, to recover the sourceχω.
This problem has been studied for generic sources by [4] who shown that it is useless to
change the input Dirichlet datag. The unique information available is given by only one
measurement, say, that Neumann boundary measurements

∂νu = gν (14)

corresponding tog= 0. The one dimensional model for the investigation of theλ parameter
influence in the modified Helmholtz equation adopted is a slab with thickness equalL =
1 and a source supported in an interval centered inxc and h = b− a larger. The main
advantages in uses the very simple simulations is that the greater majority of expressions
may be deduced in an analytical way, by using elementary calculus. We consider Dirichlet
boundary datau(0) = u0 = 0,u(1) = u1 = 0. The Neumann boundary are obtained with
an semi-analytic solver. In figure 1 we shown a model case solution of the equation for√

λ = κ = 0,0.1,0.5,2,5,7,10,12 .

Let {uλ(0),uλ(1)} and{ ∂uλ(0)
∂x ,

∂uλ(1)
∂x } be respectively the Dirichlet and Neumann data

for the slab Helmholtz source problem with model (13). Then the reciprocity functional at

the solutionsvλ
1 = sinh(

√
λ(x−xc))√

λ
andvλ

2 = cosh(
√

λ(x−xc)), are, respectively,

Rλ
vλ
1
[xc] = 0 =

∂uλ(1)
∂x

sinh(
√

λ(1−xc))√
λ

−uλ(1)cosh(
√

λ(1−xc))+ (15)

∂uλ(0)
∂x

sinh(
√

λxc)√
λ

+uλ(0)cosh(
√

λxc)
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Rλ
vλ
2
[xc,b−a] =

2sinh(
√

λ(b−a)/2)√
λ

=
∂uλ(1)

∂x
cosh(

√
λ(1−xc))+ (16)

uλ(1)
√

λsinh(
√

λ(1−xc))− ∂uλ(0)
∂x

cosh(
√

λxc)+uλ(0)
√

λsinh(
√

λxc)

The centroid and source thickness determination is done by solving these equations. In fig-
ure 2 results for a slab with thicknessL = 1, a interval characteristic source with centroid
xc = 0.5 and a source supported in the intervalh = b−a = 0.4 in the modified Helmholtz
equation for

√
λ = κ = 0,0.1,0.5,2,5,7,10,12 are inserted in the Reciprocity functional

at the hyperbolic sine and cosine function. The zeros of these functions gives the value of
the centroid and interval of the characteristic one-dimensional source. It can be seen that
the reciprocity functional intersects the horizontal axis in only on point, shown experien-
tially that the determination of the source shape may be done by the reciprocity functional
methodology.

Conclusions

We have presented a methodology for star shape source reconstruction in the transient
heat problem by using one set of Cauchy data history. The method is based on a modified
Helmholtz system based algorithm derived with the aid of finite differences timeθ-scheme.
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Figure 2: Slab modified Helmholtz equation solutions for
√

λ = κ =
0,0.1,0.5,2,5,7,10,12 model . Reciprocity functional at a hyperbolic sine func-
tion for different centroid values. The same at a hyperbolic cosine function for
centroid equal to0.5 and different interval values.
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