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Summary

Consistent and simple lumped mass matrices are formulated for the dynamic
analysis of beams with arbitrary cross section. The development is based on a general
beam theory which includes the effect of flexural-torsion coupling, the constrained
torsion warping and the shear centre location. Numerical test are presented to
demonstrate the importance of torsion warping constraints and the acceptable
accuracy of the lumped mass matrix formulation.

Introduction

During the torsion of bars an out of section plane, axial warping displacement
takes place which is assumed to depend on the change of the angle of twist. The
torsional warping has no effect on stresses if the measure of warping is the same in
each section including the ends. This implies that the torsional rotation is a linear
function along the beam axis. If the torsional rotation is far from the linear
distribution, as it is in torsional vibration modes, or the beam ends are constrained, the
torsional warping may have an important effect on the static or dynamic response of
the beam structure. In addition to the torsion warping effect, the coupling between the
bending and the tosional free vibration modes occurs when the centroid (mass centre)
and the shear centre (centre of twist) of the beam section are non-coincident.

In this paper an exactly integrated consistent and a lumped mass matrix are
presented for the 7 DOF finite element beam model. The formulation includes the
flexure-torsion coupling and the constrained warping effects.

The equation for free vibration of an elastic system undergoing small deformations
and displacements can be expressed in the form

  + =K U M U 0&& ,

where K and M are the assembled elastic stiffness and mass matrices, respectively,
and U(t) is the set of nodal displacements. The dot represents the time derivative.
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Kinematics of beam

Figure 1. shows the basic systems and notations. The local x axis of the right hand
orthogonal system is parallel to the beam straight axis and passes trough the N1, N2
element nodes of the finite element mesh. The axes y and z are parallel to the
principal axes, signed as r and s. The position of the centroid C and shear centre T
relative to the node N in the plane of the section are given by the co-ordinates yNC,
yCT, and zNC, zCT.
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Fig 1. Beam section layout

The linear kinematics of an initially straight, prismatic beam element can be
described on the assumption, that the in plane displacements of a point can be
expressed by three parameters, the angle of twist θT

x about the longitudinal axis
passing trough the T shear centre and the two uT

y and uT
z displacement components of

point T. The axial displacement is the sum of the uC
x axial displacement of the C

centroid, the θC
y, θC

z rotations of planar section about the axes r and s, and the out of
plane torsion warping displacement. Accordingly, the displacement vector is
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where ( )tx ,ϑ is the warping parameter and ωT(r,s) is the warping function, or – for
thin walled sections – the sector area co-ordinate.

The geometric properties of the cross section are:
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By using the displacement vector (1) and the Vlaszov and Bernoulli constraints as

( ) ( ) ( )
TT T
yC T C T Tz x

y z z y x

dudu d
x,t  -u  ,   x,t  u ,   x t  ,

dx dx dx
,

Θ′ ′ ′Θ = − = Θ = = ϑ = = Θ       (3)

the U strain and K kinetic energy stored in a linear elastic beam element of length L
are:
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where E, G are the properties of isotropic elastic material and ρ is the mass density.
The assumptions (3) imply that the shear deformations are neglected.

Element Matrices

The derivation of element matrices is based on the assumed displacement field. A
linear interpolation is adopted for the axial displacement and a cubic for the lateral
deflections and the twist:
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Define the order of the element 2x7=14 local displacements at the two ends as
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Substituting interpolation (5) into (4) the expression for the potential and kinetic
energy may be defined in terms of (6) local variables as

CT CCT C C C1 1
U   ,            K   .

2 2
= =U k U U m U& &

The exactly integrated consistent mass matrix mC is given in Appendix A. The kC

stiffness matrix – apart from sign conventions – is identical to the matrix published in
[3], page 89.
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The lumped mass matrix can be derived from the kinetic energy expression for an
element which undergoes a rigid body like motion and rotation. The element lumped
mass matrix is given in Appendix B. Here the lumped mass, due to the shear centre
location, is not a diagonal matrix. Nevertheless, it is computationally much more
economical then the corresponding consistent mass detailed in Appendix A.

Numerical examples

To illustrate the importance of internal and external warping constraints and the
performance of the lumped mass matrix, the results of two test problems are detailed
herein: (1) simply supported beam and (2) a cantilever.

(1) Simply supported beam: Properties used in this example are listed on Fig. 2.
Closed form solution for the torsion vibration frequency in Hz with free end warping
is known as:
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ρ = 8,0 e-9 Nsec2/mm4

Fig 2. Simply supported beam with doubly symmetric I section.

The beam was analysed with different m number of elements. At the two end nodes in
addition to the hinged support conditions the 7-th warping parameter was left free.
The results in Tables 1a, b show that the torsional frequencies – even for a coarse
mesh and lumped mass – are in good agreement with the (7) analytical solution.

n m = 2 m = 4 m = 8 m = 16 m = 20 analytical
1 66,485 66,349 66,340 66,339 66,339 66,339
2 214,29 213,63 213,59 213,59 213,59
3 462,00 454,91 454,41 454,39 454,37

Table 1a. Convergence of torsional frequencies (Hz), with consistent mass matrix.

m = 2 m = 4 m = 8 m = 16 m = 20 analytical
1 65,601 66,309 66,338 66,339 66,339 66,339
2 211,83 213,51 213,58 213,59 213,59
3 425,59 453,54 454,33 454,36 454,37

Table 1b. Convergence of torsional frequencies (Hz), with lumped mass matrix.
7 DOF results with free end warping
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 (2) Cantilever: Sectional properties of the U shape section are given on Fig. 3. For
comparison the frequencies of the beam like modes obtained by COSMOS/M thick
shell finite element model are listed in “SHELL” column in Table 2. The cantilevers
were modelled by using 1280 (U section) and 1600 (I section) four-noded
COSMOS/M thick shell elements.
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Fig 3. Cantilever with a channel U section.

The comparisons of results in Table 2 show the significant effect of warping
inertia and internal (col. A, ϑ (0) free) and external (col. B, ϑ (0) fixed) warping
constraints on ti torsion vibrations. The modes – except the byi bending modes – in
consequence of the eccentric position of the shear centre exhibit strong flexural
bending coupling. All the numerical results prove the good accuracy of the simple
lumped mass matrix.

mode A(cons) A(lump) mode B(cons) B(lump) SHELL
1 by1 17,375 17,355 by1 17,375 17,355 17,31
2 bz+t1 23,314 23,306 bz+t1 30,198 30,182 29,57
3 bz+t2 63,876 63,791 bz+t2 66,630 66,535 65,34
4 bz+t3 98,621 98,324 by2 108,66 108,23 105,83
5 by2 108,66 108,23 bz+t3 119,90 119,45 116,14
6 bz+t4 234,78 233,44 bz+t4 279,27 277,40 269,83
7 by3 303,20 301,25 by3 303,20 301,25

Table 2. Test problem 2, frequencies (Hz), 7 DOF results with free end warping (A)
and constrained end warping (B). byi, bzi bending, ti torsion, ai longitudinal modes.
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Appendix A: The 14x14 consistent mass matrix.  C 1 12
T
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Appendix B:  The 14x14 lumped mass matrix.
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