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Summary

Recently developed non-reflecting boundary conditions are applied for exterior time-
dependent wave problems in unbounded domains. The linear time-dependent wave equa-
tion, with or without a dispersive term, is considered in an infinite domain. The infinite
domain is truncated via an artificial boundaryB, and a high-order Non-Reflecting Bound-
ary Condition (NRBC) is imposed onB. Then the problem is solved numerically in the
finite domain bounded byB. The new boundary scheme is based on a reformulation of
the sequence of NRBCs proposed by Higdon. In contrast to previous papers using similar
formulations, here the method is applied to a fully exterior two-dimensional problem, with
a rectangular boundary. Numerical examples in infinite domains are used to demonstrate
the performance and advantages of the new method.

Introduction

Methods for the numerical solution of wave problems in unbounded domains have
been developed since the 70’s [1]. They have been considered in various fields of ap-
plication involving wave propagation, such as acoustics, electromagnetics, meteorology,
oceanography and geophysics of the solid earth. The four main types of methods that
have emerged are: boundary integral methods, infinite element methods, absorbing layer
methods and non-reflecting boundary condition (NRBC) methods. The present paper con-
centrates on the latter.

In the method of NRBCs, the infinite domain is truncated via an artificial boundary
B, thus dividing the original domain into a finite computational domainΩ and a residual
infinite domainD. A special boundary condition is imposed onB, in order to complete the
statement of the problem inΩ (i.e., make the solution inΩ unique) and, most importantly,
to minimize spurious wave reflection that result fromB. This boundary condition is called
a NRBC, although other names such as absorbing, radiating, open, silent, transmitting,
transparent, free-space and pulled-back boundary conditions, are often used too [2]. The
problem is then solved numerically inΩ. The setup is illustrated in Fig. 1. In the example
shown,B is the boundary on all four sides ofΩ, i.e.,B = ΓE ∪ΓN∪ΓW∪ΓS.

Naturally, the quality of the numerical solution strongly depends on the properties of
the NRBC employed. In the last 25 years or so, much research has been done to develop
NRBCs that after discretization lead to a scheme which is stable, accurate, efficient and
easy to implement. See [3]–[5] for recent reviews on the subject. Of course, it is difficult
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Figure 1: Setup for the NRBC method: an infinite domain problem.

to find a single NRBC which is ideal in all respects and all cases; this is why the quest for
better NRBCs and their associated discretization schemes continues.

The late 70’s and early 80’s produced some low-order local NRBCs that become well-
known, e.g., the Engquist-Majda NRBCs [6] and the Bayliss-Turkel NRBCs [7]. More
recently,high-order local NRBCs have been introduced. Sequences of increasing-order
NRBCs have been available before (e.g., the Bayliss-Turkel conditions [7] constitute such
a sequence), but they had been regarded as impractical beyond2nd or 3rd order from the
implementation point of view. Only since the mid 90’s have practical high-order NRBCs
been devised.

Such high-order NRBCs have been proposed by Collino [8], Grote and Keller [9],
Sofronov [10], Hagstrom and Hariharan [11], Guddati and Tassoulas [12], Givoli [13], and
Givoli et al. [14],[15]. In the latter papers, we develop high-order NRBC schemes for both
dispersive and non-dispersive linear time-dependent waves. The schemes are based on NR-
BCs which were originally proposed by Higdon [16]. The original implementation of the
Higdon NRBCs was limited to low orders. In [14], Givoli and Neta proposed a new imple-
mentation method that allows the use of high-order discretized Higdon NRBCs. However,
this method differs from the original Higdon formulation only on the discrete level, not on
the continuous level; thus, like the original Higdon scheme, it involveshigh normal and
temporal derivatives, of increasing order. This has several clear disadvantages. In addi-
tion, the computational effort required by the scheme devised in [14] grows exponentially
with the order of the NRBC. In a follow-on paper, Givoli and Neta [15]reformulatedthe
Higdon NRBCs on the continuous level in a completely new way. This formulationdoes
not involve any high derivatives. This is made possible by introducing special auxiliary
variables onB. The new construction allows the easy use of a Higdon-type NRBC ofany
desired order, and can be incorporated in a Finite Element (FE) or a Finite Difference (FD)
scheme. In [15] and [17] Givoli et al. used, respectively, FDs and FEs to discretize both the
partial differential equation inΩ and the NRBC onB. The computational effort required
by the scheme grows onlylinearly with the order.

The development in [14], [15] and [17] was limited to the configuration of awave
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guide, whereB is a single plane boundary (sayΓE in Fig. 1). In the present paper, we ex-
tend the results of Givoli and Neta [14],[15] to the case that all four sides of the rectangular
domainΩ require NRBCs. In this caseB hascornerswhich may potentially lead to numer-
ical instabilities. In the present paper no special treatment is applied to the corners; indeed a
long-time instability is observed for the auxiliary-variable formulation as expected. Special
corners conditions may be devised similarly to the treatment in [18]; however, this issue is
beyond the scope of this paper.

Statement of the Problem

We consider wave propagation in a two-dimensional infinite domain as described in
Fig. . Consider the linear inhomogeneous Klein-Gordon equation,

∂2η
∂t2 −C2

0

(
∂2η
∂x2 +

∂2η
∂y2

)
+ f 2η = S . (1)

In (1), η is the unknown wave field,C0 is the given reference wave speed,f is the given
dispersion parameter, andS is a given wave source function. TheC0 and f are allowed to
be functions of location in a finite region, outside of which they are constant. The wave
sourceS is a function of location and time, but it is assumed to have a local support.

The initial conditions

η(x,y,0) = η0 ,
∂η(x,y,0)

∂t
= η′0 , (2)

are given at timet = 0 in the entire domain. We assume that the functionsη0 andη′0 have
a local support.

We now truncate the infinite domain by introducing an artificial boundaryB = ΓE ∪
ΓN ∪ΓW ∪ΓS; see Fig. . This boundary divides the original infinite domain into two sub-
domains: an exterior domainD, and a finite computational domainΩ which is bounded by
ΓW, ΓN, ΓS andΓE. We choose the location of the four sides such that the entire support of
S, η0, η′0, as well as the region of non-uniformity ofC0 and f , are all contained insideΩ.
Thus, onB and inD, the homogeneous counterpart of (1) holds, i.e.,

∂2η
∂t2 −C2

0

(
∂2η
∂x2 +

∂2η
∂y2

)
+ f 2η = 0 , (3)

with constant coefficientsC2
0 and f 2, and the medium is initially at rest.

To obtain a well-posed problem in the finite domainΩ we need to impose a boundary
condition onB. This must be a NRBC so as to minimize spurious reflection of waves. We
use two reformulations of theHigdon NRBC[16] that were developed in [14] and [15].
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The first one differs from the original Higdon formulation only on the discrete level, and
as such involves high order normal and temporal derivatives. The second one only requires
second order derivatives. The Higdon NRBC of orderJ is

HJ :

[
J

∏
j=1

(
∂
∂t

+Cj
∂

∂ν

)]
η = 0 on B . (4)

Here,∂/∂ν is the normal derivative and theCj are constant parameters which have to be
chosen and which signify phase speeds in the direction normal to the boundary.

The main advantages of the Higdon conditions were listed in Givoli and Neta [15].
Difficulties associated with their original formulation are as follows: (a) The discrete Hig-
don conditions were developed in the literature up to third order only, because of their
algebraic complexitywhich increases rapidly with the order; (b) The originalJth-order
Higdon NRBC involveshigh normal and temporal derivatives, up to orderJ, which pose
obvious disadvantages.

The new formulations presented in [14] and [15] overcome all these difficulties. Both
reformulations allow the easy use of Higdon NRBCs up to anarbitrarily high order. The
scheme is coded once and for all for any order; the order of the scheme is simply an input
parameter.

Numerical Experiment

We consider an example involving a persistent point source which is turned on att = 0
at the middle of the computational domain. The computational parameters are∆x = ∆y =
.25, and∆t = .1. The parametersC0 = 1 and f = 0 are used. The Higdon conditions are
applied along all four sides of the domain, withCj = 1 for all the j ’s. The reference domain
D∗ is taken here to be large enough that during the computation time0≤ t ≤ 6 the wave
front does not reach the extended outer boundaries at all (although it does of course pass the
truncated boundaryB). We measure the relative global error as a function of time. Fig. 2
shows the maximum relative error during0≤ t ≤ 6 as a function of the Higdon orderJ,
for 1≤ J≤ 20. The error reduces sharply when passing fromJ = 1 (the Sommerfeld-like
condition) toJ = 2, then oscillates slightly whenJ is further increased, and levels off at
about2.5%. The error cannot be reduced further without also refining the grid and choosing
a smaller time-step size. With both Higdon formulations, no instability has been observed
in this case. For additional examples where the error is measured for increasingJ, see [14]
and [15].

Fig. 3 shows the comparison of the computed solution with the reference solution with
J = 20at t = 6. Very good agreement between the two solutions is observed.
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Figure 2: Maximum relative error for1≤ J≤ 20.

Figure 3: The persistent source problem: solution withJ = 20at t = 6.
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