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Summary 

 

In this paper, a versatile and efficient solution of the differential equilibrium equation 
for an initially curved beam element under high axial load and arbitrary boundary 
conditions is derived. The initial lateral curvature is included by a sine curve 
approximation. The present paper focused the effect of the initial imperfection which can 
be expressed as an equivalent nodal force with respect of nodal generalized coordinates. 
By using this approach, the initial curvature can readily be introduced in the global 
equivalent load vector. This formulation, offers a significant practical advantages for the 
elastic buckling analysis of an imperfect beam element.  

 

Introduction 

 

In the recent  publications about the geometric nonlinear behaviour of an elastic beam 
element under high axial load, it appears clearly the need to formulate an accurate 
element with an initial geometric imperfection. This imperfection is adopted in various 
national design codes as an initial curvature of which the magnitude is commonly taken 
as 0.1% of the member length. The beam-column method which corresponds to the 
analytical resolution of the differential equilibrium equation gives the well-known 
stability functions. However, the stability functions derived from this approach neglected 
the initial member curvature, therefore its application to design and analysis becomes 
limited. Recently, Chan and Gu[1], proposed an exact solution for an imperfect beam-
column members by using the stability functions approach. The authors used 
Thimoshenko’s theory (Timoshenko and Gere 1961) [2], and extended this theory to take 
into account the effect of the initial curvature along the element length. 

In the present paper, a versatile and efficient displacement function introducing the 
effect of the initial imperfection, expressed with respect of nodal generalised coordinates 
is derived analytically from the differential equilibrium equation. 

                                                             
1Built Environment Research Laboratory, Faculty of civil engineering, University of science and technology Houari 

Boumediene, BP 32 El-Alia, Bab Ezzouar, 16111, Algiers, ALGERIA. 
2 National Center of Building Research (CNERIB), Souidania, Algiers, ALGERIA  

1971
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



This formulation offers a significant practical advantages to overcome limitations 
arising from the classical ones . 

 

Element formulation 

 

Consider a beam segment (ij) with initial curvature given in Fig. 1. 
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Figure1: Beam-segment model 

 

 

The equilibrium equation along the element length can be expressed  in compressive 
case as: 

 

Ŵ,xx + K2 (Ŵ +Wo)= - Mo/ EI (1) 

Where: Ŵ is the deflection superimposed to the initially curved beam under high 
compressive load.(( ,xx) indicate the second derivative operator.) 
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And: (2) ⎟
⎠
⎞

⎜
⎝
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L
xVoWo πsin.

 

 WO is the initial curvature. Vo is the magnitude of the initial curvature. 

 

 (3) 
EI
N

K=

 

 Mo= Mi + Ti . x (4) 

 Ti = (Mj - Mi ) / L (5) 

 

E=Young modulus of elasticity, I=moment of inertia, Mi and Mj are the nodal 
moments, Ti and Tj are the nodal shears. 

 

The general solution of Eq. (1) is: 
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C1, C2, C3, C4, are constants depending on the boundary conditions of the element(ij). 

One poses: β= KL (7) 

 X= x / L (8) 

 

Let Dr expressed by: (9) )sin()cos(22Dr ββ+β+−=
 

one poses: Ŵ =W + W1 (10) 

 

The lateral displacement W brings out exclusively the coupling between the 
compressive force N and the deflection of the beam element(without taking into account  
the effect of the initial curvature). 
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W1 .yields for lateral displacement part associated with the magnitude Vo of the 
initial curvature. 

Superimposing the deflection Ŵ to the initial curvature Wo, we obtain the final 
deflection of the element, written as: 

 

WF = Ŵ + Wo (11) 

 

From WF we can deduce the displacement function part associated with the initial 
curvature which is given by: 

 

Wv = W0 + W1 =Nv .Vo (12) 

 

Where: 
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B1, B2, B3 are expressed by: 
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The function Wv associated with the magnitude Vo is used to derive the analytic 
expression for the equivalent nodal forces relating to the initial curvature. 
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Discussion 

 

For the present approach, the solution is derived from the equilibrium equation by 
using arbitrary boundary conditions with respect of nodal generalised coordinates. We 
have noted a significantly difference between the present solution and their 
corresponding one, proposed in reference [1] which is expressed by: 
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β

N v π
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= (17) 

 

The case of hinged-hinged beam, with the properties cited below: 

Young modulus: E=1E7 

Moment of inertia: I=.101322 

Length of the beam: L=100 

Imperfection’s amplitude: V0=.1 

Which correspond to Euler’s critical load: Ncr=1000, is considered. 

The results of the present approach are compared to those cited in reference[1] in 
table1. 

 

TABLE 1. Nфi(x) for the present study and reference [1] 

β Wv(x=L/2) 

present 

Wv(x=L/2) 

Reference:[1] 

Π/2 .1057 .1333 

Π .1282 .1236E5 

3Π/2 .2097 -.0800 

2Π .1035E5 -.0333 

 

We can readily observe from table 1 that the buckling capacity of the hinged-hinged 
beam deviates from Euler’s buckling load (βcr=Π) and tends to the limit which 
corresponds to the case of a fixed-fixed beam  (βcr=2Π) 
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Conclusion 

 

In the present paper, we present a new formulation for the elastic buckling analysis of 
an imperfect beam element. The contribution of a sinusoidal imperfection is derived from 
the resolution of the differential equilibrium equation with arbitrary boundary condition, 
and the results obtained from this approach are compared to those in reference [1], where 
restricted boundary conditions are considered.  

The main observed result is that the buckling capacity of the hinged-hinged beam 
deviates from Euler’s buckling load (βcr=Π) and tends to the limit which corresponds to 
the case of a fixed-fixed beam  (βcr=2Π) 
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