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Summary

This paper presents an efficient BEM for solving biharmonic equations. All boundary
values including geometries are approximated by the universal high order radial basis func-
tion networks (RBFNs) rather than the usual low order interpolations. Numerical results
show that the proposed BEM is considerably superior to the linear/quadratic-BEM in terms
of both accuracy and convergence rate.

Introduction

Many engineering problems such as plate bending problems are governed by bihar-
monic equations. The numerical analysis of biharmonic boundary value problems can be
accomplished by a number of techniques: FDM, FEM, BEM and other methods. The
boundary element method is seen to have some advantages over the domain type solution
methods. For example, the system of equations obtained by the BEM is small relative to
those obtained by the FDM and FEM. Furthermore, in the case of homogeneous equations,
it requires discretization only on the boundary. In a typical BEM, low order interpolations
such as constant, linear or quadratic schemes are used to represent the boundary values. As
a result, dense meshes are normally required in order to achieve high accuracy. Note that
for the solution of integral equations of the first kind, the use of large numbers of boundary
elements can lead to ill-conditioned systems of algebraic equations.

Radial basis function networks have been proven to have the property of universal ap-
proximation. Theoretically, RBFNs can represent any continuous function to a prescribed
degree of accuracy using relatively low numbers of data points. However, in practice, due
to the lack of theoretical determination of the network parameters, it is difficult to achieve
this universal approximation. To represent a variable and its derivatives, there are two basic
approaches. The first approach, namely direct RBFNs (DRBFNs), is based on the differ-
entiation process while the second one, namely indirect RBFNs (IRBFNs), is based on
the integration process. From an approximation theoretic point of view, the approximating
functions are expected to be much smoother through the integration process and therefore
IRBFNs can have higher approximation power than DRBFNs [1].

In the present work to deal with biharmonic equations, indirect RBFNs are introduced
into the BEM scheme to represent all boundary values. Good accuracy and high rate of
convergence with mesh refinement are obtained with the present method. The remainder
of the paper is organized as follows. A brief review of integral equations for biharmonic
equations is given in section 2. Section 3 presents the indirect RBFN approach. The pro-
posed IRBFN-BEM method is described in section 4 and then verified through a number of
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examples including plate bending problems in section 5. Section 6 gives some concluding
remarks.

Integral equations for the biharmonic boundary value problem

Consider the biharmonic equation defined on a 2D domain Ω for a function v(x,y),

∇4v = p(x,y), (1)

where p(x,y) is a known function of position. By introducing a new variable u = ∇ 2v,
integral equations for the two following equations,

∇2u = p(x,y) and ∇4v = p(x,y),

can be written as

C(P)u(P)+
∫

Γ

∂GH(P,Q)
∂n

u(Q)dΓ =
∫

Γ
GH(P,Q)

∂u(Q)
∂n

dΓ

−
∫

Ω
GH(P,Q)p(Q)dΩ, (2)

C(P)v(P)+
∫

Γ

∂GH(P,Q)
∂n

v(Q)dΓ =
∫

Γ
GH(P,Q)

∂v(Q)
∂n

dΓ

−
∫

Γ

(
∂GB(P,Q)

∂n
u(Q)−GB(P,Q)

∂u(Q)
∂n

)
dΓ−

∫
Ω

GB(P,Q)p(Q)dΩ, (3)

where P is the source point, Q the field point, Γ the boundary of Ω, C(P) the free term
coefficient which is 1 if P is an internal point, 1/2 if P is a point on the smooth boundary
and θ

2π if P is a corner (θ the internal angle of the corner in radians), n the outwardly normal
unit vector, GH and GB the harmonic and biharmonic fundamental solutions respectively
whose forms are

GH =
1
2π

ln

(
1
r

)
and GB =

1
8π

r2
[
ln

(
1
r

)
+1

]
,

in which r = ‖P−Q‖.

Indirect RBFNs

Consider a function of one variable f (s). The second order IRBFN scheme is em-
ployed here to represent f (s). In this scheme, the second order derivative is decomposed
into RBFs. The approximating function obtained is then integrated to yield expressions for
the first order derivative and the original function,

d2 f (s)
ds2 =

m

∑
i=1

w(i)g(i)(s), (4)

d f (s)
ds

=
∫ m

∑
i=1

w(i)g(i)(s)ds+C1 =
m+1

∑
i=1

w(i)H(i)
[1] (s), (5)

f (s) =
∫ m+1

∑
i=1

w(i)H(i)
[1] ds+C2 =

m+2

∑
i=1

w(i)H(i)
[0] (s), (6)
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where m is the number of radial basis functions (neurons), {g (i)}m
i=1 the set of RBFs,

{w(i)}m
i=1 the set of network weights to be found, {H (i)

[.] }m
i=1 new basis functions obtained

from integrating the radial basis function g. For convenience, integration constants which
are unknowns here and their associated known basis functions (polynomial) on right hand

sides in (4)-(6) are also denoted by the notations w (i) and H (i)
[.] respectively but with i > m.

In the present work, multiquadrics is considered

g(i)(s) =
√

(s− c(i))2 +a(i)2, (7)

in which {c(i)}m
i=1 is the set of RBF centres and {a(i)}m

i=1 is the set of RBF widths.

It is different from the previous work dealing with viscous flow problems [2], the
set of network weights {w(i)}m+2

i=1 is now converted into the set of nodal variable values
{ f (s(i))}n

i=1 in order to make the BEM matrix square. By choosing the set of training points
to be the same as the set of centres, i.e. {s(i)}n

i=1 = {c(i)}m
i=1 with n = m, the evaluation of

(6) at the set of training points results in




f (s(1))
f (s(2))

...
f (s(n))


 =




H(1)
[0] (s(1)) · · · H(m)

[0] (s(1)) s(1) 1

H(1)
[0] (s(2)) · · · H(m)

[0] (s(2)) s(2) 1
· · ·

H(1)
[0] (s(n)) · · · H(m)

[0] (s(n)) s(n) 1







w(1)

w(2)

...
w(m+2)


 , (8)

or

f = H[0]w. (9)

The obtained system (9) is solved using the general linear least squares. The network
weights can now be expressed in terms of the function values { f (i)}n

i=1,

w = H−1
[0] f. (10)

By substituting (10) into (4)-(6), the function f and its derivatives at an arbitrary point s
can be computed by

f (s) =
[

H(1)
[0] (s) · · · H(m)

[0] (s) s 1
]

H−1
[0]

[
f (1) f (2) · · · f (n)

]T
, (11)

d f (s)
ds

=
[

H(1)
[1] (s) · · · H(m)

[1] (s) 1 0
]

H−1
[0]

[
f (1) f (2) · · · f (n)

]T
, (12)

d2 f (s)
ds2 =

[
g(1)(s) · · · g(m)(s) 0 0

]
H−1

[0]

[
f (1) f (2) · · · f (n)

]T
. (13)

The IRBFN-BEM algorithm

The procedural flow chart can be summarized as follows

• Divide the boundary into a number of segments over each of which the boundary is
smooth and the prescribed boundary conditions are of the same type;

1341
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



• Approximate all boundary values including geometries on each segment by IRBFNs,
e.g. for geometries and the variable v,

x(s) =
[

H(1)
[0] (s) · · · H(m)

[0] (s) s 1
]

H−1
[0]

[
x(1) x(2) · · · x(n)

]T
,

y(s) =
[

H(1)
[0] (s) · · · H(m)

[0] (s) s 1
]

H−1
[0]

[
y(1) y(2) · · · y(n)

]T
,

v(s) =
[

H(1)
[0] (s) · · · H(m)

[0] (s) s 1
]

H−1
[0]

[
v(1) v(2) · · · v(n)

]T
,

∂v(s)
∂n

=
[

H(1)
[0] (s) · · · H(m)

[0] (s) s 1
]

H−1
[0]

[
∂v(1)

∂n
∂v(2)

∂n · · · ∂v(n)

∂n

]T
;

• Substitute the IRBFNs representing the boundary values into the integral equations
(IEs) (2)-(3) and then discretize the IEs;

• Impose the boundary conditions;

• Solve the system of algebraic equations obtained by Gaussian elimination;

• Evaluate the interior solution at selected internal points.

Numerical examples

In the following examples, for simplicity, the width of the ith neuron (a (i)) is chosen
to be the minimum distance from the ith centre to neighbouring centres. The accuracy
of numerical solution produced by an approximation scheme is measured via the norm of
relative errors of the solution as follows

Ne =

√√√√∑nt
i=1

[
f0(s(i))− f (s(i))

]2

∑nt
i=1 f0(s(i))2

, (14)

where nt is the number of test points, s(i) is the ith test point, f and f0 are the calculated
and exact functions respectively.

Example 1 Consider the homogeneous biharmonic equation ∇ 4v = 0 on a unit square
domain, subject to the boundary conditions for u and v. The exact solution is given by

v =
1
2

(xsinxcoshy− xcosxsinhy) .

Ten uniform discretizations of the boundary, namely 3× 4,5× 4, · · · ,21× 4 (number of
nodes per segment× number of segments), are employed to study mesh convergence. A set
of 26×4 test points is used to compute the error norm Ne for all different meshes and their
results are displayed in Figure 1-a. Results of Ne obtained by the linear and quadratic BEMs
are also included for comparison. The present method gives the most accurate results,
followed by the quadratic-BEM and the linear-BEM. At the first four coarse meshes, the
convergence rates are of O(s̄1.76), O(s̄2.70) and O(s̄3.48) for the linear, quadratic and IRBFN
BEMs respectively in which s̄ denotes the boundary node spacing.
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Example 2 This problem is the same as the previous one, except that the domain of
interest is a circle of radius R = 2 and the boundary conditions are of the types v and ∂v/∂n.
This problem provides a good means to test and validate numerical methods. A number
of uniform meshes (15×2,20×2, · · · ,40×2) and a test set of 50×2 points are employed
along the boundary. Again, the present method yields the best performance as shown in
Figure 1-b. It should be pointed out that the linear-BEM here performs better than the
quadratic-BEM. The reason could be that the boundary solution u obtained by the latter is
less smooth (only C0 continuous to be guaranteed here) than that obtained by the former,
resulting in larger fluctuations in the boundary solution ∂u/∂n. The solutions converge
apparently as O(s̄1.78), O(s̄1.15) and O(s̄2.43) for the linear, quadratic and IRBFN BEMs
respectively in which s̄ denotes the nodal spacing.

Example 3 A simply supported square plate of [0,200]× [0,200] cm 2 with an uniform
load q is considered here. The parameters of the problem are

E = 2.1×106kg/cm2, q = 0.5kg/cm2,h = 10cm, ν = 0.3,D = Eh3/12(1−ν2).

Table 1 summarizes the results on the boundary obtained by the present method and also
by the linear-BEM [3]. With the same mesh of 9× 4 used, the present method achieves
much more accurate results than the linear-BEM.

Conclusion

This paper reports a new BEM for the analysis of biharmonic problems. Unlike con-
ventional BEMs, all boundary values in the biharmonic integral equations are represented
by the universal high order RBFNs. For a better quality of approximation, all networks are
constructed based on the integration process rather than the differential process. To make
the BEM system of equations square, prior conversions of the sets of network weights
into the sets of variable values are employed. Numerical examples show that the proposed
method performs much better than the linear/quadratic BEM in terms of both solution ac-
curacy and convergence rate.
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Table 1: Plate bending problem.

∂v
∂n ×10−3 (error)

Method (x = 25,y = 0) (x = 50,y = 0) (x = 75,y = 0) (x = 100,y = 0)
Analytical -0.1146 -0.2048 -0.2613 -0.2804
IRBFN-BEM -0.1150(0.35%) -0.2051(0.15%) -0.2616(0.11%) -0.2807(0.11%)
BEM [3] -0.126 (9.95%) -0.222 (8.40%) -0.276 (5.63%) -0.298 (6.28%)

D ∂u
∂n ×102 (error)

Analytical 0.1959 0.2813 0.3243 0.3376
IRBFN-BEM 0.1961(0.10%) 0.2812(0.04%) 0.3244(0.03%) 0.3376(0.00%)
BEM [3] 0.2072(5.77%) 0.2828(0.53%) 0.3277(1.05%) 0.3394(0.53%)
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Figure 1: Results of the error norm Ne obtained by the linear, quadratic and IRBFN BEMs.
The present method is superior to the linear and quadratic BEMs in terms of both solution
accuracy and convergence rate.
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