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Summary 

A non-iterative approach based on adjoint formulation of conduction heat transfer is 
proposed to identify the thermal boundary conditions from a transient temperature history 
measured in a solid body. Using a numerical solution of the adjoint problem, which can 
be regarded as a numerical Green’s function, the temperature at the measuring point can 
be evaluated under arbitrary thermal boundary conditions. As a result, we can inversely 
predict the thermal boundary conditions from the measured temperature history by 
assuming the step-wise profiles of thermal boundary conditions both in time and space.  

Introduction 

Since inverse heat conduction problems (IHCP) arise in many areas of engineering 
and science, a number of solution methods have been developed for the IHCP[1,2]; 
especially, the inverse problem of estimating the thermal boundary conditions from 
temperature measurements in a heat conducting body is constantly of a great interest[3]. 
For this kind of problem, an optimization strategy with regularization technique is often 
applied, in which the differences between the measured temperatures and simulated ones 
are iteratively minimized. In such methods, however, a large number of numerical 
simulations for the heat conduction field are required in the iterative optimization 
process; this leads to a large computational load. 

In this paper, a non-iterative approach based on adjoint formulation of conduction 
heat transfer is proposed, the goal of which is to identify the thermal boundary conditions 
from a single transient temperature history measured in a heat conducting body. The first 
step for developing the present method is to formulate the general relationship between 
the thermal boundary conditions and the temperature at the measuring point. We use the 
weak formulation of heat conduction problem to derive the relationship. Then, by using a 
numerical solution of the resulting adjoint problem, which can be regarded as a numerical 
Green’s function whose one point is fixed at the measuring point, the temperature at the 
measuring point can be evaluated under arbitrary thermal boundary conditions. Thus, in 
the inverse step, we can non-iteratively predict the thermal boundary conditions from the 
measured temperature history by assuming the step-wise profiles of thermal boundary 
conditions both in time and space. The results of computational experiments in a two-
dimensional heat conduction problem are presented to demonstrate the present method. 
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Problem Formulation 

Consider a finite solid body with constant material properties, and let Ω be an inner 
domain and Γ its boundary. Then the heat conduction equation can be written in a 
dimensionless form as 
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where x is the space vector, t is the time, and T is the temperature. 

Here, we introduce a temperature θ (x,t) defined as the difference from a known 
initial temperature distribution, and we suppose that the boundary Γ consists of the 
temperature-specified boundary Γθ and the heat-flux-specified boundary Γq. Then, the 
governing equation and the initial and boundary conditions adopted in this study can be 
summarized as follows: 
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where θs and qs represent the boundary temperature and the boundary heat flux, and n 
denotes the outward unit vector normal to the boundary. 

Under these assumptions, the problem is to identify the temperature or heat flux on 
part of the boundary from a transient temperature history measured at a point within the 
domain. 

Identification Methodology  

For convenience in representing the integral equations derived later, we denote Eq.(2) 
by using the linear operator L, such that 

[ ]( , ) 0tθ =xL , 2

t
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− ∇
∂

≡L               (5) 

Let us now consider the weak form of Eq.(5), which can be expressed as 
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Ω =∫ ∫ L                (6) 

where θ * is a test function or an adjoint temperature and τ is the specific time.  
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Applying integration by parts to Eq.(6), we obtain the following integral equation: 
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where q* is the adjoint heat flux, and L* denotes the adjoint operator, which can be 
expressed as 

2*

t
∂

− ∇
∂

= −L                 (8) 

In order to eliminate the last term in the right-hand side of Eq.(7), we set the adjoint 
temperature at τ as 

( )* , 0θ τ = ∈Ωx x                (9) 

which can be regarded as an initial condition for the adjoint problem. 

Moreover, in order to evaluate the thermal boundary condition effects on the 
temperature measured at ξ and at τ, we choose the following adjoint problem: 

( ) ( ) ( )* ,* t tθ δ δ τ  = − −  ξx xL             (10) 

( )* , 0t θθ = ∈Γx x , ( )* , 0 qq t = ∈Γx x           (11) 

where ( )δ ⋅  is Dirac’s delta function. 

Finally, substituting Eqs.(9)-(11) into Eq.(7), we obtain the following boundary 
integral relationship: 
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Equation (12) indicates that if we numerically solve the adjoint equation (10) under the 
initial and boundary conditions in Eqs.(9) and (11), we can predict the temperature at ξ 
and at τ under arbitrary thermal boundary conditions. 

Let us now consider an inverse problem, in which the thermal boundary conditions 
should be evaluated by a temperature history measured at ξ. In this study, we assume that 
the boundary is divided into N sub-boundaries, on each of which the thermal boundary 
condition is uniform. We also use the following step-wise assumption in time; the 
thermal boundary conditions are constant over a short period of time and we can obtain 
M ( M N≥ ) temperatures at ξ over each time period. 

According to Eq.(12) under the step-wise assumptions above, the temperatures 
measured at ξ over a short time period (0 < t < τM) can be written in matrix form, such as 
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where 

( )
( )

( )

1

2

,
,

, M

θ τ
θ τ

θ τ

       =         

ξ
ξ

θ

ξ
M , 

1

2

N

b
b

b

       =         
Mb , 

11 12 1

21 22 2

1 2

N

N

M M MN

C C C
C C C

C C C

    =      

L
L

M M O M
L

C         (14) 

In the eqations above, nb  ( 1,2, ,n N= L ) are unknown temperatures on θΓ  or unknown 
heat fluxes on qΓ , while mnC  ( 1,2, ,m M= L , 1,2, ,n N= L ) are known coefficients that 
can be obtained as 
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by numerically solving the adjoint problem (10) under the boundary conditions (11). 

As a result, the thermal boundary conditions can be estimated from the temperature 
history measured at ξ  by solving 

( ) 1T T−= θb C C C               (16) 

in a least squares sense. 

It should be noted that the solution of the adjoint problem in Eq.(10) converges 
rapidly in time, because it is an impulse response from a unit impulse at ξ. In other words, 
only the early stage of the solution is significant and the late stage is negligible. Thus, we 
can compute mnC  in Eq.(15) at arbitrary time mτ  using a truncated numerical solution. 

Results of Computational Experiments 

In order to demonstrate the present method, we carried out two computational 
experiments in a two-dimensional square body as shown in Fig.1, in which the heat flux 
on the bottom surface should be identified, while the temperatures on the top and side 
surfaces are known. 

In both two computational experiments, the measured temperature histories at ξ were 
simulated numerically by the finite difference method. The adjoint problem (10) under 
the thermal boundary conditions (11), which is common to both cases in Fig.1, was also 
calculated by the finite difference method. 
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      (a) Case 1              (b) Case 2 

Fig.1  Identification models in a two-dimensional square body 
 

The purpose of the first computational experiment (Case 1 in Fig.1) is to identify the 
heat flux distribution on the bottom surface, which is imposed at t = 0 and is maintained 
at constant value in time, such that 

( )
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In this example, the bottom surface is divided into seven sub-boundaries (N = 7) as 
shown in Fig.1(a), and also seven measured temperatures (M = 7) are used as indicated 
by circle plots in Fig.2. The identification result is shown in Fig.3; the agreement of 
predicted heat flux distribution with the exact one can be seen to be quite good. 
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   Fig.2  Measured temperature history in Case 1        Fig.3  Identification result in Case 1 

1739
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

θ
(ξ

,t
)

t
0.0 0.2 0.4 0.6 0.8 1.0

 

-10

0

10

20

30

40

50

0.0 0.2 0.4 0.6 0.8 1.0
t

q
(t)

Estimated
Exact

q
1
(t)

q
2
(t)

 

   Fig.4  Measured temperature history in Case 2        Fig.5  Identification result in Case 2 
 

In the second computational experiment (Case 2 in Fig.1), we attempted to identify 
time-dependent heat fluxes imposed on the bottom surface as shown in Fig.1(b), in which 
the heat fluxes are assumed to be 

( ) ( )2
1 18 1 on tq t e Γ−= − , ( ) ( )4

2 230 1 10 on tq t e Γ−= − +  

Fig.4 indicates the temperature history at ξ with a random noise of 2% of the 
maximum temperature. As mentioned in the previous section, we assume the step-wise 
profiles for both the heat fluxes q1(t) and q2(t); the period of time is 0.1 (τM = 0.1) and the 
number of measured temperatures in each period is 250 (M = 250). As shown in Fig.5, 
the time-dependent heat fluxes can also be estimated satisfactorily by the present method. 

Concluding Remarks 

In this study, we propose a non-iterative method to identify the thermal boundary 
conditions from a temperature history measured in a solid body. The main features of the 
present method can be summarized as follows: Introducing an adjoint problem and its 
associated Green’s function, the relationship between the thermal boundary conditions 
and the measured temperature history can directly be obtained. Using the numerical 
Green’s function and assuming the step-wise profiles both in time and space, we can 
determine the thermal boundary conditions in the least squares sense.  
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