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Summary

A geometrically non-linear finite element method is proposed to investigate composite
shell structures with integrated piezoelectric layers. The strain displacement relations are
based on a moderate rotation theory and the Reissner Mindlin hypothesis. The internal and
external virtual work is calculated using the total Lagrangian formulation. Two examples
are presented to demonstrate the effect of the geometrical non-linearity on actuator and
sensor applications of the piezoelectric layers.

Introduction

The aim of modern designing is to reduce the weight of structures as well as the raw
material needed for manufacturing. This leads to leight-weight structures which are sen-
sitive to stability problems as well as oscillations. In recent years much research has been
conducted in the area of smart materials and structures to overcome this weakness.
The theory of piezoelectric plates and shells in the geometrically linear range of defor-
mation is extensively treated by Tzou [6] amongst others. Considerably less work can be
found in the area of geometrically non-linear theories, e.g. [1], [2] and [5].
In this work an approach to FE simulation of sensor application and shape control is demon-
strated based on non-linear shell theory. In a similar way recently Mukherjee et al. [2] have
demonstrated the geometrically non-linear sensor application based on von Kármán type
non-linear beam theory, and Lee et al. [3] have treated shape control based on linear degen-
erated shell elements.

Electromechanical equations

The virtual work principle states a state of equilibrium between the external virtual
work δWe and internal virtual work δWi. In the present work a total Lagragian formulation
is chosen. For this approach the mechanical and electrical quantities need to be defined
with reference to the undeformed configuration, denoted by the lower left subscript 0, and
integration is performed over the undeformed volume and surfaces.
The internal virtual work is the volume integral of the virtual electric enthalpy δH and it
can be written as:

δWi =

Z

V
δH dV with δH = 0σi j

0δεi j − 0Di
0δEi, (1)

where 0σ
∼

denotes the 2nd Piola-Kirchhoff stress tensor, 0ε
∼

is the Green-Lagrange strain
tensor, 0D

∼
denotes the electric displacement vector and 0E

∼
is the electric field vector. The
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latter is calculated as the gradient of the electric potential φ in the undeformed configuration

0E
∼

=−GRAD(φ). (2)

The Green-Lagrange strain tensor components with the assumption of first-order shear de-
formation theory, small strains but moderate rotations are expressed as [4]:

εαβ =
0
εαβ +Θ3 1

εαβ +
(

Θ3)2 1
εαβ

εα3 =
0
εα3 +Θ3 1

εα3 (3)

ε33 = 0

with

0
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0
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1
2

0
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0
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,

2
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,
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and
1
εα3=

1
2

1
v λ 1
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The following abbreviations are used:

0
θαβ=

1
2

(

0
vα|β +

0
vβ|α

)

−bαβ
0
v3,

0
ϕαβ=

0
vα|β −bαβ

0
v3 and

0
ϕα=

0
v3,α +bλ

α
0
vλ,

where bαβ and bα
β denote the covariant and mixed components of the curvature tensor and

(.)|α is the covariant derivative with respect to the surface parameter Θα. The translation

of the midsurface in direction of Θi is denoted with
0
vi and the rotation of the normal in

direction Θα with
1
vα.
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Constitutive Relations

The piezoelectric effect is described by the following set of linear constitutive equa-
tions in vector form:

{0D} = [e]{0ε}+[δ]{0E} (4)

{0S} = [c]{0ε}− [e]T {0E} (5)

where {0S} denotes the stress vector, {0ε} the strain vector, {0D} the electric displacement
vector and {0E} the electric field vector.
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Further [e] = [d] [c] and [e]T = [c] [d]T , [c] denotes the elasticity matrix for anisotropic ma-
terial, [d] the piezoelectric constant matrix and [δ] the dielectric constant matrix
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It is assumed that the electric field is only existent in transverse direction and homo-
geneous between the poles of an electrode pair. In the present work the electromechanical
system is treated in a decoupled way. The actuators are voltage driven and the influence
of the generated electric field of the sensors on the mechanical stresses is assumed to be
negligible.

Examples

Two examples, the geometry and material properties of which are given in Figure (1)
and Table 1, are considered. Figure 2 refers to the cantilever beam and displays the results
of two cases. On the left hand side the sensor voltages are displayed in case the beam
is loaded with a tip force of 2.5 N and the upper PZT layer is subdivided into 10 equal
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Figure 1: Two examples: a cantilever beam and a hinged beam.

Table 1: Material properties.
E [GPa] ν [-] d31 [Cb/N] δ33 [F/m]

aluminium 65 0.3 - -
steel 210 0.3 - -
PZT 63 0.3 1.66 ·10−11 1.59 ·10−8

PVDF 2 0.3 2.2 ·10−11 1.06 ·10−10

electrode pairs. At this load a clear difference is noticed between the geometrically linear
approach and the moderate rotation theory. Due to stress stiffening the deformations in
the non-linear case are smaller, which explains smaller sensor voltages than predicted by
linear theory. The graph on the right hand side shows the deformed configuration when the
beam is loaded by a tip force of 0.01 N and the lower PZT layer is actuated such that the
tip deflection remains zero. Two cases are considered in which the actuator layer consists
of either one patch over the length of the beam or 10 equal patches. In the first case an
actuation voltage of 92.68 V has to be applied to reduce the tip deflection to zero. In the
latter case the actuation voltages are applied proportionally to the sensor voltages in the
left graph. The maximum voltage of 269.07 V has to be applied in order to reduce the tip
deflection to zero. The results are only shown for the linear case, since the deflections are
small. Deflections in the range of non-linear theory would require too high actuating volt-
ages. Figure 3 refers to the hinged beam. In the upper left corner the results are displayed
when both PVDF layers are actuated. The non-dimensionalised mid-point deflection and
longitudinal stress at the mid-surface are shown. In the linear case, i.e. for the pure bend-
ing problem, the stress is expected to be zero. One can observe that a longitudinal stress
develops when the non-linear solution diverges from the linear one. This reflects the von
Kármán effect and indicates that additional tensile forces are induced in the geometrically
non-linear range of deformation. A very good agreement is obtained with [1] where fi-
nite elements based on non-linear beam theory have been used. In the upper right corner
the sensor voltages in the upper PVDF layer, subdivided into 10 equal electrode pairs, are
displayed when a force of 0.001 N is applied in the mid-point. Again, due to stress stiff-
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Figure 2: left: sensor voltages at 2.5 N, right: piezoelectrically activated beam at 
0.01 N.

Figure 3: upper left: non−dimensional mid−point deflection and longitudinal stress,
upper right: sensor voltages at 0.001 N in the mid−point, lower left and right: piezo−
electrically activated beam at 0.001 N (linear and MRT analysis).

MRTlinear
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ening the deformations predicted by non-linear analysis, and hence the sensor voltages,
are smaller than those predicted by linear theory in most areas of the beam, except of the
boundary, where tensile forces dominate which are not accounted for by linear analysis.
Next, once again it is assumed that the lower PVDF layer consists of 10 equal patches and
a voltage proportional to the respective sensor output is applied until the beam is flattened.
The results are displayed in the two lower graphs. The deformed beam is shown with the
associated maximum applied voltages. In contrast to the cantilever beam, here the deflec-
tions are in the range of geometrically non-linear theory. Therefore the results of linear and
MRT analysis differ significantly. Linear analysis overpredicts by far the deformations.

Conclusions

A geometrically non-linear finite element method is proposed to investigate composite
shell structures with integrated piezoelectric layers. By means of two examples a clear
difference between a geometrically linear and a non-linear approach in the simulation of
structures with integrated piezoelectric layers is demonstrated.
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