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Summary

In this paper an extension of the crisp optimization of structures by  considering
uncertainty is presented. Uncertain parameters are described as fuzzy  variables. This
method is demonstrated by way of an example. 

Introduction

The results obtained from classical methods of optimization involving
deterministic variables exhibit various shortcomings. In particular, the effects of the
uncertainty attached to all input information is often ignored altogether or only taken
into account to a limited degree. The classical deterministic optimization problem
according to Eq. (1) is considered under the aspect of uncertainty, and extended. 

For the objective function z(x, e) the optimum solution xOPT from the set of
design variables X (design space) is determined under compliance with the equality
constraints hj(x, e) and the inequality constraints gi(x, e). Input parameters such as
geometrical parameters, material parameters, external load parameters, reliability
parameters and economic parameters are lumped together in the vector e. 

Uncertain parameters may be described using interval variables, stochastic
variables (provided sufficient statistically-proven information is available) or, as
selected in this case, by fuzzy variables. The uncertainty models may also be
combined.

In this paper the input parameters e = {e1, e2, ..., ef} are modeled as the fuzzy
variable . The design variables  x 0 X  are considered to be crisp variables, as it is
assumed that decision-makers require crisp design variables for the structure
concerned [1]. 
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(3)

(2)

Fuzzy optimization problem

Uncertain input parameters  may be present in the objective function as well as
in the equality and inequality constraints of Eq. (1).

Uncertain external loads or system characteristic values in the equality
constraints, which represent the deterministic system analysis, lead to uncertain
inequality constraints. An uncertain limit  may be directly specified for the right-
hand side of the inequality constraint, e.g. in the form of uncertain reliability
parameters. The uncertainty of the decision-maker with regard to objectives is taken
into consideration by means of an uncertain formulation of the objective function. 

Considering the uncertain parameters to be fuzzy variables, the deterministic
optimization problem expressed by Eq. (1) is extended to a fuzzy optimization
problem.

Fuzzy variables are indicated by a tilde. The cartesian product of the uncertain
variables   is a fuzzy set which exists in addition to the design space. This is
referred to as the fuzzy input set .  

On the basis of the latter a solution algorithm is presented for the case of
uncertainty only in the inequality constraints of Eq. (2). The vector e of the input
parameters is subdivided into a crisp part e and a fuzzy part . Only the crisp
parameters e are taken into consideration in the objective function.

Fuzzy inequality constraints

The fuzzy loads and fuzzy parameters  are taken into consideration in the left-
hand side of the inequality constraint given by Eq. (2). These are defined by speci-
fying the fundamental set E and the membership function :(e) ([1] - [4] , Fig. 1).

For the right-hand side  of the uncertain " "relationship a membership
function is also defined, which remains constant at a value of unity up to the
deterministic limit ri,"=1 (Fig. 1), and subsequently takes on the form of
monotonically decreasing function. This so-called soft restriction permits a certain
degree of exceedence of the apparently secure limit ri,"=1 (dependent on the defined
function) up to the limit ri,"=0 .
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(5)

(4)

(7)

(6)

In this approach the permissible region is restricted in an uncertain manner.

Fig. 1  Fuzzy variable, uncertain inequality constraint

Solution of the fuzzy optimization problem by means of  """"-discretization

The numerical solution of the fuzzy optimization problem is based on "-
discretization [4]. On each "-level the fuzzy variable is described by the crisp "-level
set E

"
 (see Fig. 1).

The fuzzy optimization problem thus reduces to an inner and outer deterministic
optimization problem on each "-level. The "-level sets E

"
 of all uncertain input

parameters form the input subspace E
"
.

By comparing Eqs. (2) and (5) it follows that the effect of "-discretization is to
subdivide the fuzzy inequality constraints  into deterministic inequality
constraints.

The fulfillment of gi,"(x, e) # ri," requires that all elements e 0 E
"
 satisfy Eq. (6).

The ei* 0 E
"
, is sought which leads to gi,"(x[it], ei*) Y max for a fixed x[it] . The

determination of ei* forms the inner optimization problem.

This inner optimization problem must be solved for each inequality constraint.
For the case of monotonic mapping of the uncertain input parameters  in the
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inequality constraints gi,"(x, ei) # ri," a check of the corner points of the input
subspace is sufficient. 

After solving the inner optimization problems for all inequality constraints and
x[it] a new design variable for the outer optimization problem may be investigated.

The optimization algorithm may be summarized as follows:

(1) Choose a (new) design variable x[it] in the iteration step it.
(2) Find  ei* for the inequality i using Eq. (7)
(3) Have all inequalities been dealt with? no Y (2), Yes Y (4)
(4) Are all inequalities fulfilled? no Y (1), yes Y (5)
(5) Compute the objective function value of x[it]

(6) Has the objective function value been improved? yes Y xOPT = x[it] Y (7),
no Y (7)

(7) Is the termination criterion satisfied? yes Y END, no Y it =: it +1, (1)

In order to solve the inner and outer optimization problems modified evolution
strategies are applied [4]. In [5] the solution strategy for the inner optimization
problem is also referred to as so-called anti-optimization.

Due to fuzzy uncertainty in the right-hand side of the inequality constraint the
permissible region increases as the "-level decreases (see Fig. 1). The solution with
an improved objective function value may lie in the enlarged region. Uncertain input
parameters, as in the following example, reduce the permissible region.

Example    

This example demonstrates the effects of uncertain loading on the optimum
result in a computation of the optimum cross-section of a framework made of
aluminum with a density of 0.1 lb/in³ and an elasticity modulus of 10000 ksi. The
load is modeled as a fuzzy parameter.

Fig. 2  System and loading 
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The right-hand sides of the inequality constraints (in this case permissible
stresses perm F in bars 1 to 10 and a permissible displacement perm *2) are modeled
crisply, perm F = 25 ksi and perm F = 75 ksi, respectively for bar 9. The permissible
displacement *2 is 5 in. The minimum cross-sectional area is 0.1 in². 

Fig. 3  Input subspace of the "-level: " = 0.8

A geometrically and physically linear computation is carried out. The results of
the inner optimization problems for the level " = 0.8,  xOPT," =0.8 are listed in Table 1.

Table 1  Optimum elements ei* of the input subspace " = 0.8 and xOPT," =0.8

bar / i 1 2 3 4 5

ei*

6 7 8 9 10 *2 / 11

The results of the outer optimization problem for different load uncertainty and
different "-levels are listed in Table 2. The larger cross-sectional areas necessary for
an uncertain load lead to larger structural volumes. A more robust load-bearing
behavior is thus guaranteed.
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Whereas a statically determined framework is obtained as the optimum
framework under crisp loading, a consideration of uncertainty leads to a statically
undetermined framework as the optimum framework.

Table 2  Optimum cross-sectional areas [in²]

" = 1.0 " = 0.8 " = 0.6 " = 0.4 " = 0.2
bar 1 4.0353 4.4639 5.9136 7.9104 9.4929
bar 2 0.1 0.1 0.1 0.1 0.1
bar 3 4.0353 6.823 9.8867 12.855 15.607
bar 4 12.1 14.041 16.023 18.013 20.006
bar 5 3.8646 4.36063 4.1457 3.8895 3.8246
bar 6 0.1 0.1 0.1 0.1 0.1
bar 7 11.263 12.377 12.416 12.226 12.307
bar 8 0.1 0.1003 1.6219 3.4105 4.9408
bar 9 2.7577 4.6254 6.2954 7.3543 8.5169
bar 10 0.1414 0.1 0.1 0.1 0.1
weight 1598.6 1949.9 2342.4 2718.8 3085.6

Conclusions

By taking uncertainty into consideration it is possible to arrive at improved
(more robust or lighter) designs with the aid of structural optimization. Future
investigations will concentrate on the solution of the multi-criteria problem,
uncertain objective functions and uncertain models.
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