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Boundary Integral Equations with the Divergence Free Property

for Elastostatics Problems

J. Jackiewicz'

Summary

The paper presents boundary integral equations (BIEs) with the divergence free
property (DFP) for linear elastostatics problems. The application of the BIEs allows
reducing two-dimensional (2D) problems of elastostatics to an evaluation of single-
valued potential functions. Hence now it is possible for elastostatics problems to solve the
general 2D-boundary element formulation analytically, and moreover to construct various
kinds of 2D finite elements only based on the analytical solution omitting the numerical

integration technique.

Introduction

The direct BE formulation for 2D elastostatic problems [1] can be derived from

Bettis’s reciprocal work theorem for two self-equilibrated states of displacements u | u,

tractions t | t* and volume forces b | b*. If Hooke’s body is exposed to two different
systems of volume and surface forces, then the actual work done by the forces of the first
system along the displacements of the second system is equal to that work done by the
forces of the second system along the displacements belonging to the first system:

[ 67w, 0+ [t u dr = [b,u; dQ+ [1,u; dr.
Q r Q T

)

In Eq. (1) the displacements, tractions (i.e. the stress vectors ¢, = o, n, related to the

outward normal vector, #;) and body forces are respectively determined on the boundary

I'=0Q and in the domain Q. The field of u*, t" and b" corresponding to the governing

solution of elasticity theory can be expressed as
u;(p)=U,,(p.q) ¢;(9)

5 (p)=T7,(p.q) ¢,(q)

b (p)=0(r) ¢;(q)
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for the i direction at any field point p due to the unit force ¢, in the ; direction applied
at the load point ¢. In Eqs (2) ¢;; is the Kronecker delta function, 5(r) the Dirac delta

function, and the fundamental solutions for 2D linear elastic problems are given by
_ A In(r)5 ] 3
Uij(psCI)—Z (3_4V) n(r) ij il (3a)

Zj(p,q):%{[(l - j 2y, ]—— 2\/)(1”’,.11/. —J(jn[)} (3b)

where 4. =-1/[4z(1-v)], u is the shear modulus of elasticity, v Poisson’s ratio and r is
the distance between p and ¢ .

Formulation of the BIEs with the DFP for Elasticity Problems

In the absence of volume forces Eq. (1) can be written as:

Qel' > ”i(p): I[Uij(p’Q)ij(Q)_ ij(psQ)u/(Q)]nk(Q)dF . 4)

If the DFP [2,3] of the boundary integrand, treated here as a vector field F, is fulfilled:

(V-Fe, = (U,./. ey ),k €= [(U,-j‘k o5 =T u; ) (U ik =Tk “/)] ¢=0, (5
then the boundary integral is independent of the path chosen for the integration. Note a

straightforward application of the equilibrium conditions leads to the following
expressions: o, , =0 and o), =7, =0, where ¢, (i=12) are the unit vectors.

i

However the use of Bettis’s reciprocal work theorem yields

*

(U[j,k o~ T u; )e —u/ KOk iju, k=05 =0 €k =€k jimn Enn = €5 K jtmn €mn =0
where k represents the elasticity-tensor for a homogeneous isotropic medium.
On each boundary element AT, (see Fig. 1), the displacement components u, =~ and

4i(p)

u, . are approximated by the 11near interpolation function. Note values of traction
2(p)
components 751% and 7@(,1) are constant along AL, . The formulated functions, which are
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needed to evaluate the boundary integrals, are enclosed in the appendix. A notation of
used symbols is shown in Fig. 2.

X
= A
i, ) e EF( )
c1(3 S1(3
~L
~1 ~ ~F u.
t &2(2)
u 2(3) £203) A N, uéz(z)
= ﬁ[( )
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ar
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7 M) = M(2)€40
Si(4)
Al

Fig. 1: Basic notations.

Conclusion

The presented here solution allows to more efficiently formulate so-called fast
boundary (or finite) elements in solid mechanics.
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Appendix

Singular expressions for: & =0 and & =-Al/2

Al
Aém (Al) = J(3 - 4V)ln(§2);;ﬁ dg, =
-Alj2 (A1)

(3—4v)tim2[%, (in(e,)- 1] 7 = (3- 4v){ln(%l] - 1} AT,

AG, (Al)= Nfz[@ —4v)in(¢,)-1]7, d&, = {(3 - 4v){1n(%lj - 1} - 1} AT, (A2)

~Alj2

1 Alf2 *
AL (A1) = ﬁ‘fv)ajA—l(l“f)d; - ‘(l;*zv)aj [5—2—1)015; ——(I-2w)il  (A3)
,Il s "2 2 AI,/Z & elal 2 ¢

_ 1 N2 .
NANS (1 ;V)E;Z Azl (”f)dg: [ (1 ;V)ag (%+%}d§;:(l—2v)ﬁé (A4)

~Al/2

_ IS _ el X

~AlJ2

1

Alj2 *
AﬁL(Al):j—(l—2v)~LAl(l+§)dé«: J‘ —(l—ZV)ﬁL(éJF%Jd(S:_(1_2,/)5;1 (A6)

u
m é:z* & 2 2 52* & Al

) —Alj2

Alj2 M - A2 *
because of: | 9 _ nm[ [ a jdgifJ: lim In(z)— In(A7/2) + In(A7/2) ~ In()] = 0

*
0+ 0
A2 92 TP\ LA S P &

Non-singular expressions for: & #0

émm:j{{(a—zwnnm— e }a:

2 2 t§1 2 2 t§2
S +é, S +é, (A7)
{(3 —4v)(§2(lnﬂ§12 +&° —lj+2(l —2v)§1 arctan%}t; —&Iny&? +§221N§2 + 5,71
G,&)=] {— ae 7 +{(3—4v)1n1/§,2+§22 —ZLZ}?@}CJ; -
S S S +é, (AS)

-&In 1/512 + 522751 + {(3 - 41/)§2 ln1l§12 + 522 + 4(1 - V{é arctan% =&, Ht; + 5,]2
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T [0 ERE S W (1% 5 W PN (5
(€)= I{L S (gluggz)z]“ Lﬂ s (§IZ+§;2T]§2}2 2
-2 =)t o+ st )
{(1—21/){5;4_2?145; +§13(;)‘£_M}_§1{B( 2*)+ 251 ZM]}N§Z+DF

a2 &§+é 2
A= (1:2v)€1+ 28] o (1- 21/);2 287 e LA Al (1+g) (+¢) 4
R Y §esy (1 g'f]7) 2

{(1-%){51115 _&rBle } erBe)- (;52%} (A10)

%‘f—) &)+ 5 ”f «:,[ )}}uéﬁDL

s +52 2

[—NI'Z(;):J _(12_2‘/*)25; + 251252*2 17511-" (1 Zv)é:l 25152*2 551: Al( g)dg—
51 +§2 (é‘lz-i-fz* )z 51 +§2 (512"'5; )z 2

{(l_zv){_ ekl 52 (Hg)} 51[ ) & iea ¥}}ﬂg+@m)

&wY%f@;meﬂ%§1@MMn<4%wF

()= j{[—(l—2V);§£‘+(2§f§i ] [(1 W, 268 ]ﬁé}ﬂ ),
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where 24 §2

ce)-¢ §,2+2§f ;Al ;
& +&

229

( 2):—arctané;—?

&=1,)=¢ + (”;)

~ ~ NE RNL  RF NL
¢,,C,,D,,D,, D, and D, are constants, and (-1<¢ <1).

m?

L(a)
%)

L

X1

Fig. 2: Local co-ordinates system for the boundary element Al{, and source point P,

Note that |95 - )"

= for the singular elements (512‘,;% =0) when P = M.
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