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Summary

Complex dynamics found in (a) natural doubly-diffusive convection, and (b) surface
tension-driven convection in a binary liquid mixture using a combination of numerical
continuation and direct numerical simulation in three dimensions are linked to the presence
of global bifurcations in the phase space of the governing field equations.

Introduction

We describe and compare the mechanisms behind the presence of complex dynam-
ics in two convection systems: natural doubly-diffusive convection and surface tension-
driven convection in three-dimensional enclosures. We use numerical branch-following
techniques [2],[3] to follow branches of steady states through parameter space, together
with their stability properties. We search for regimes in which none of these simple states
is stable, and then use direct numerical simulation [4] to determine the behavior of the sys-
tem in this regime. Our systems illustrate two different mechanisms for generating such a
“stability gap”. In the former it comes about via the onset of a three-dimensional instability
that is absent in a strictly two-dimensional formulation. In the latter the gap is created by
changing the horizontal cross-section of the container from square to slightly rectangular,
i.e., via forced symmetry-breaking. In each case we provide a geometrical interpretation
for the presence of complex dynamics in the stability gap.

Natural doubly diffusive convection

Natural doubly diffusive convection, i.e., convection driven by a horizontal concentra-
tion and temperature gradients perpendicular, displays a wealth of dynamical behavior. We
assume that the wall at x � 0 is maintained at temperature ∆T � 0 and concentration ∆C � 0
above those imposed at x � L, and measure the relative importance of the temperature and
concentration gradients by the buoyancy ratio N � ρC∆C � ρT ∆T , where ρT � ∂ρ � ∂T � 0,
ρC � ∂ρ � ∂C

� 0. The dimensionless governing equations are

∂u
∂t

� ��� u � ∇ 	 u � ∇p 
 ∇2u 
 Gr � T 
 NC 	 ez � ∇ � u � 0 � (1)

∂T
∂t

� ��� u � ∇ 	 T 
 1
Pr

∇2T � ∂C
∂t
�
��� u � ∇ 	 C 
 1

Sc
∇2C � (2)

where Gr � gρT ∆T L3 � ν2 is the Grashof number, and Pr, Sc are the Prandtl and Schmidt
numbers. Here g is the gravitational acceleration, and ν the kinematic viscosity. The heat
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and mass fluxes vanish along the boundaries y � 0 � Ay and z � 0 � Az, and u � � u � v � w 	 � 0
on all walls.

When N ��� 1 the problem has the conduction solution u � θ � Σ � 0, where T �
1 � x 
 θ � x � y � z 	 , C � 1 � x 
 Σ � x � y � z 	 . With the given boundary conditions the equations
for u, θ, Σ are invariant under the two operations

Sy : � x � y � z 	�� � x � Ay
� y � z 	 � � u � v � w � θ � Σ 	�� � u � � v � w � θ � Σ 	 � (3)

S∆ : � x � y � z 	�� � 1 � x � y � Az
� z 	 � � u � v � w � θ � Σ 	�� ��� u � v � � w � � θ � � Σ 	�� (4)

Thus Sy is a reflection in the plane y � Ay � 2 while S∆ is a rotation by π about the line
x � 1 � 2, z � Az � 2. It follows that the equations are also invariant under the operation
S∆ � Sy

� Sy � S∆ � SC, corresponding to a point symmetry with respect to the center of
the container. These symmetries constitute the symmetry group D2. If S is a nontrivial
element of D2 and e is an eigenvector of the linearized problem, then Se ��� e, i.e., the
instability either respects or breaks the symmetry S. As a result each neutral stability curve
is characterized by a particular symmetry. In particular, if Se � e for all S � D2, the generic
bifurcation from the conduction state is transcritical. In contrast, if one of the reflections
in D2 is broken, the bifurcation is a pitchfork. In the bifurcation diagrams these facts are
indicated using the notation Tj for the jth transcritical bifurcation from the conduction
state, and Pj for the jth pitchfork bifurcation. The diagrams show WM ���w � max, i.e., the
maximum of the absolute value of the vertical velocity in the enclosure, as a function of the
Grashof number. Thus two distinct branches of solutions, unrelated by any of the problem
symmetries, emerge from points labeled Tj. In contrast, the two solutions emerging from
points Pj are related by the broken symmetry and so have identical values of WM at fixed
Gr; consequently only a single solution branch emerges from each Pj.

When Pr � 1, Sc � 11 and Ay
� 1 � Az

� 2 � 5 (fig. 1a) the first instability, at GrP1
�

997 � 5, is a subcritical pitchfork bifurcation. The resulting unstable branch terminates in
a pitchfork bifurcation at GrS2

� 959 � 2 on the subcritical branch emanating from a tran-
scritical bifurcation at T1 (GrT1

� 1045). After S2 the latter branch undergoes a second
pitchfork bifurcation at S1 (GrS1

� 770), and then a saddle-node bifurcation at GrSN
� 679,

but remains unstable throughout. The supercritical branch emanating from T1 is initially
once unstable and undergoes two Hopf bifurcations before terminating on the conduction
state at T2. Thus over the entire range of parameter values explored the only stable steady
solutions are those located on the branch created at S1, associated with longitudinal rolls,
between the two Hopf bifurcations H1 (GrH1

� 1267) and H2 (GrH2
� 1568). The “stabil-

ity” gap GrP1 � Gr � GrH1 is created when S1 moves down past SN [3].

The bifurcation at GrH1 is supercritical and so produces stable small amplitude os-
cillations in Gr � GrH1 . In contrast the bifurcation at H2 is subcritical and leads to large
amplitude oscillations. These persist down to Gr � 936 � 5 and up to the largest values
of Gr explored (Gr

� 3000), coexisting with the small amplitude oscillations in the in-
terval 1085 � Gr � GrH1 � 1267. In order to detect the symmetry of the corresponding
flow we construct three indicators of symmetry breaking: for a generic point M inside the
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container we compute the quantities Iy
� w � M 	 � w � Sy

� M 	�	 , I∆
� w � M 	�
 w � S∆

� M 	�	 and
IC � w � M 	�
 w � SC

� M 	�	 as a function of time. If any of these indicators vanishes identi-
cally the flow has the corresponding symmetry. Using this technique we show that all the
oscillations found for Az

� 2 � 5 are SC-symmetric. Figure 1b shows the time evolution of
Iy and w � M 	 when Gr � 936 � 5, while fig. 1c shows a plot of Iy against w � M 	 . The figure
shows that the oscillation is almost heteroclinic, spending a long time near two fixed points,
labeled A and B. Figure 1c shows that these fixed points are Sy-symmetric, in addition to
having the symmetry SC of the oscillation. Thus both correspond to D2-symmetric steady
states. Both solutions lie on the subcritical steady state branch emanating from T1 with the
solution B located on the lower part of the branch and A on the upper part. At this value
of Gr (GrS1 � Gr � GrS2) the solution B is unstable with respect to D2-symmetric pertur-
bations but no other. A solution starting near B will therefore follow the unstable manifold
of B which takes it to A. This solution is stable with respect to D2-symmetric perturbations
since it lies above SN but because it also lies above the point S1 it is unstable with respect to
perturbations breaking Sy (and hence S∆ as well). This is confirmed in fig. 1b which shows
that Iy

� 0 once the solution escapes from A. The one-dimensional unstable manifold of
A then takes the system back to B; during this phase the flow is dominated by longitudinal
rolls. As Gr decreases to Gr � the oscillation becomes more and more burst-like, before
losing stability in a saddle-node bifurcation prior to a heteroclinic bifurcation at Gr � Gr � ,
936 � Gr ��� 936 � 5 [3].

Similar behavior occurs at other values of the aspect ratio and does not require the
presence of the conduction state N ��� 1. Figure 2 shows examples for Ax

� Ay
� 1 and

(left) N ��� 0 � 99, (right) N � � 1 � 007, for comparison with the N � � 1 case in [3]. Both
cases exhibit complex dynamics for reasons identical to those described above.

Surface tension-driven convection

We next turn to binary mixtures with a free but undeformable surface, in which con-
vection is driven by temperature and concentration-dependent surface tension [2],[4]. As a
result gravity can be ignored, and the bifurcation parameter becomes the Marangoni num-
ber instead of the Grashof number. We suppose that the system is heated from above by
a constant heat flux � q. In a mixture the surface tension σ depends on both temperature
and concentration, σ � σ0 ! 1 
 γT

� T � T0 	�
 γC
� C � C0 	#" , where γT and γC are constants

such that qγT � 0. In the following we measure the strength of the imposed heat flux by the
flux Marangoni number Ma � � qH2σ0γT � λρνκ, where H is the container height, λ is the
thermal conductivity, ρ is the fluid density and κ is the thermal diffusivity, and the strength
of the Soret effect by the Marangoni-Soret parameter SM

�$� DSγC � DγT , where D and DS

are the concentration and Soret diffusion coefficients. The latter quantifies the contribution
to the mass flux due to temperature inhomogeneities. Thus DS

� 0 implies that the heav-
ier component in the mixture migrates towards cooler regions and vice versa. As defined,
Ma is positive and instability sets in as Ma increases. In pure liquids or binary mixtures
with SM

� 0 the primary instability of the conduction state is steady state; in contrast, for
sufficiently negative SM the instability becomes oscillatory.

These results follow from equations (1)-(2) with Gr � 0, subject to appropriate bound-
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ary conditions [1]. We impose no-slip no-mass flux boundary conditions along all rigid
walls, and assume insulating boundary conditions along lateral walls (x �%� Ax � 2, y �� Ay � 2) and a constant temperature along the bottom (z � 0). Along the free surface (z � 1)
we take

∂u
∂z
� Ma

Pr

&
∂T
∂x

 SM

∂C
∂x ' � ∂v

∂z
� Ma

Pr

&
∂T
∂y

 SM

∂C
∂y ' � w � 0 � ∂T

∂z
� ∂C

∂z
� 1 � (5)

The equations with these boundary conditions are invariant under the operations

Sx : � x � y � z 	�� �(� x � y � z 	 � � u � v � w � T � C 	)� �(� u � v � w � T � C 	 � (6)

Sy : � x � y � z 	�� � x � � y � z 	 � � u � v � w � T � C 	)� � u � � v � w � T � C 	 � (7)

generating the symmetry group D2 of a rectangle. When Ax
� Ay the operation

Πxy : � x � y � z 	�� � y � x � z 	 � � u � v � w � T � C 	)� � v � u � w � T � C 	 (8)

is also a symmetry. In this case Sy
� Πxy � Sx � Πxy; the two operations Sx and Πxy then

generate the symmetry group D4 of a square. In either case the conduction solution u � 0,
T � C � z is an equilibrium for all values of Ma and this equilibrium possesses the sym-
metry D2 (Ax *� Ay) or D4 (Ax

� Ay). It follows that when a steady state instability breaks
the D4 symmetry roll-like states with symmetry Sx or Sy set in at the same time as states
with diagonal symmetry Πxy or Πyx. Theory shows that at most one of these may be stable
near onset, but continuation allows us to follow these states to large amplitude. In the case
of oscillatory onset theory predicts the simultaneous bifurcation from the conduction state
to oscillations that are (i) invariant under the operation Sx, (ii) invariant under the operation
Πxy and (iii) invariant under the rotation R � Sx � Πxy followed by evolution by a quarter pe-
riod. In the following we shall refer to these states as SW, DW and RW, respectively. These
acronyms stand for standing (S), diagonal (D) and rotating (R) waves (W). To compute
the Sx-symmetric states we impose the symmetry φ � x � y � z 	 � φ �(� x � y � z 	 for φ � v � w � T � C
together with u � x � y � z 	 ��� u �(� x � y � z 	 . The imposition of this symmetry stabilizes the SW
branch against perturbations that break it and permits us to compute the SW branch us-
ing a time-integration code provided only that the SW bifurcate supercritically. Like-
wise to compute the Πxy-symmetric states we impose the symmetry u � x � y � z 	 � v � y � x � z 	 ,
v � x � y � z 	 � u � y � x � z 	 together with φ � x � y � z 	 � φ � y � x � z 	 for φ � w � T � C. There is no corre-
spondingly simple prescription that allows us to compute the discrete rotating waves when
these are unstable.

Figure 3(a) shows the bifurcation diagram when Ax
� Ay

� 1 � 5, SM
�+� 0 � 01, Sc � 100.

The figure displays the evolution with the Marangoni number of WM � max �w � x � y � z 	 � of
the w component of the velocity u measured at the Gauss-Lobatto-Legendre nodes. The
oscillatory instability sets in at Ma � 127 � 7, and the three resulting solution branches all
bifurcate supercritically, with the RW stable and the SW and DW unstable.
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When the cross-section of the domain is perturbed by changing Ax from 1.5 to 1.51 the
above picture changes dramatically (fig. 3b). The perturbation selects Sy-symmetric stand-
ing waves as the first state to bifurcate from the conduction state, followed by Sx-symmetric
standing waves. The former are initially stable while the latter unstable. Thus, as in the
case of steady onset (SM

� 0), the selected SW are oriented parallel to the shorter side,
although exceptions can occur [2]. However, with increasing Ma the Sy-symmetric SW
must transfer stability to large amplitude states (hereafter RW , ) resembling the RW (stable
in the square case), and they do so via a secondary Hopf bifurcation followed by a global
bifurcation at which a hysteretic transition to larger amplitude RW , takes place. Our simu-
lations indicate that this Hopf bifurcation is supercritical and produces a secondary branch
of quasiperiodic states. As Ma increases further the new frequency decreases dramatically,
suggestive of an approach to a global bifurcation near Ma � 127 � 37. We surmise that this
global bifurcation involves two unstable symmetry-related single frequency oscillations re-
lated to either DW or RW, but since neither of these states possesses any symmetry once the
domain becomes rectangular we have no way of computing them. Note that the breaking of
the D4 symmetry ’unmasks’ the supercritical SW which are unstable in the problem with
full symmetry, but become stable near onset when the symmetry is broken. To confirm this
interpretation of the simulations we have used the amplitudes and (nonlinear) frequencies
of the three states SW, DW and RW near onset to determine the coefficients in the normal
form describing the primary Hopf bifurcation. Coupled with the results of the linear stabil-
ity analysis for Ax *� Ay the resulting normal form reproduces in all respects the numerical
results summarised in fig. 3 [4].

In addition to the parameter regime explored above we have also carried out prelimi-
nary computations in other regimes. For example, in a square domain of side Ax

� Ay
� 3

the primary instability when SM
�
� 0 � 05 is an oscillatory state that does not break the D4

symmetry of the container. In this case the constraints imposed by the symmetry are absent
and one does not expect to find interesting transitions near onset.

This work was supported by a CNRS-Royal Society collaborative grant (AB/EK), NSF
under grant DMS-0072444 (EK) and EPSRC under grant GR/R52879/01 (EK).
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FIG. 1. (a): Bifurcation diagram for the case N OQP 1, Ay O 1, Az O 2 R 5, Pr O 1 and Sc O 11, showing

WM as a function of the Grashof number Gr. Solid dots (triangles) indicate steady (Hopf) bifurcations.

The insets show surfaces w O�S K for suitable choices of K at the locations indicated by the arrows.

Resolution is 13 T 13 T 19. (b,c):Nonlinear oscillations at Gr O 936 R 5, when Ay O 1, Az O 2 R 5,

Pr O 1 and Sc O 11. (b) Time evolution over one period of Iy U w V M WXP w V Sy V M W#W (continuous line)

and w V M W (dashed line) at a generic point M. (c) Phase plane representation of the oscillation in (a).

When Iy O 0 the solution is D2-symmetric; when Iy YO 0 it is only SC-symmetric.
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FIG. 2. As for fig. 1-a but for Ax O Ay O 1 and (left) N OyP 0 R 99, (right) N OzP 1 R 007. Resolution is
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FIG. 3. Bifurcation diagram showing W O maxt w as a function of Ma for Pr O 1, Sc O 100, SM OP 0 R 01, Ay O 1 R 5 and (a); Ax O 1 R 51 (b): Ax O 1 R 51. Rotating waves are indicated by RW and standing

waves by either DW or SW, depending on their symmetry. In (b), oscillations resembling rotating

waves at large amplitude are indicated by ‘RW’ and are present for Ma � 127 R 35. The secondary

torus bifurcation T2 occurs at Ma � 127 R 32 and the resulting two-frequency oscillations (not shown)

have been observed for 127 R 32 � Ma � 127 R 37
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