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Subcritical and supercritical bifurcations of the Benney equation

AlexanderOront andO. Gottlieb!

Summary

In this paperwe carry out the bifurcationanalysisof the Benng equation(BE). The
main resultof this analysisshows thatthe primary bifurcationof the BE is supercritical,
whenthe Reynolds numberis below a certaincritical value,andis subcritical,whenthe
Reynoldsnumberexceedghelatter The subcriticalstructureof BE is verifiednumerically
and further investigatedanalytically via a two-modedynamicalsystem. This truncation
accuratelydescribesolutionsnearthe linear stability thresholdandyields the exact tran-
sition to subcriticality Furthermorethe analysisenablesieterminatiorof a closedsubdo-
mainwithin thelinearly stableregiondescribingcoexistingtravelingwaves(TW) predicted
by the subcriticalHopf bifurcation. Thewavesof larger/smallemamplitudearefoundto be
stable/unstablegspectiely, andtheirtransitionto bedefinedby a saddle-nodéifurcation.

Introduction

Benng [1] derived the nonlinearpartial differential evolution equationreferredto
nowadaysas the Benng/ equation. This evolution equationdescribeshe nonlineardy-
namicsof aninterfaceof atwo-dimensionaliquid film flowing on a fixedinclined plane.
The BE hasbeenextensiely studiednumericallyand analytically over several decades.
Lin [4] carriedout a bifurcationanalysisof the BE andfoundthatthe primary bifurcation
is alwayssupercritical. He alsofound that the filtered wave satisfyingthe pertinentcom-
plex Ginzlurg-LandaltequationCGLE)is sideband-stablddowever, ourresultspresented
belov disagreewith hisresultsalmostin all aspects.

Preliminaries
We studythe Benng equationin theform givenby [2]

8R 25
he + 2h2hy + G[Ehﬁhx + §h3hxxx]x +0(a?) =0, (1)

which describeshe spatiotemporatlynamicsof the two-dimensionaliquid film of amean
thicknesdl falling on a staticverticalplate, whenthe physicalpropertieof theliquid, such
asdensityp, kinematicviscosityv, andsurfacetensiono are specified.Hereh = h(x,t)
representshenondimensiondiilm thicknessdependingpn the dimensionlesindependent
spatialandtemporalvariablesx andt, respectiely.

The systemparametersnclude the fundamentalgravity- and surfacetension-related
dimensionlesparameter® = gd®/(2v?), W = o/(pgd?), whichareReynoldsandinverse
capillarynumbersrespectrely, andthe smallaspect-ratigparameten = 2rd /A beingthe
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ratio betweenthe averagefilm thicknessd multiplied by 2t andthe characteristiavave-
lengthof the interfacial disturbanced. The Reynoldsandthe rescalednversecapillary
numbersR andS = a?W, respectiely, areassumedo be O(1). The space-timevariables
(x,t) representhe correspondinghysicalspace-timevariablesstretchedby a small pa-
rameter definedabove. Thewavelengthi is choserasthe entirelengthof the systemso
that solutiondomainfor Eq.1lis 0 < x < 21t In whatfollows the flow is consideredn an
infinite spatialrange(—oo, o) with a 2r-periodicity.

The linearizedversionof Eq.1 aroundits trivial solutionhg = 1 readsin termsof a
smalldisturbancef theflat film interffaceu=h—-1

8R 2S
u[ +2uX+ C((l—5uXx+ EUXXXX)_FO(GZ) == O (2)

To orderO(a?) Eq.2hasa TW solutionwith the fundamentalvavenumberko = 1 in
theform u(x,t) = I exp[i(x— ct)] + I exp[—i(X— ct)], wherel is acomplex amplitudeof
the wave independenbf x,t, ¢ is the complex wave celerity givenby ¢ = ¢ +icj, ¢ =
2, ¢ = 0(8R/15— 2S/3), andbarsdenotecomplex conjugatesThe solutionh = 1 of the
BE in the periodicdomain (0,2m) is asymptoticallystable(unstable)if ¢; < 0 (¢ > 0),
which is equivalentto 8R/15 < 2S/3 (8R/15 > 2S/3). The onsetof instability is oscilla-
tory via a Hopf bifurcation. At the instability thresholdof the system8R/15 = 2S/3 the
parametersf the problemarelinked by the relationshipa = ay = /4R/(5W). Beyond
thethreshold the film surfaceevolvesasa stationarywave propagatingdownstreamwith
thespeed:;.

Weakly nonlinear stability analysis of the Benney equation

We derive the Complex Ginzhurg-Landauequationarisingfrom the Benng equation
1. In thevicinity of criticality givenby ¢; = O(8%) whichis equivalentto 8R/15— 2S/3=
O(8%) the critical wavenumberis k = 1, the slow independenvariablesare definedby
X = dx, Ty = &, T» = &%, whered measureshe distancerom criticality, andthe solution
of Eq.1lis expandedn power seriesof d ash(a, x,t,X,T1,T2) = 1+ 0n(a,x,t,X,T1, o) =
1+ 6r]1+ 62ﬂ2+ 63n3+ -+ with Nj=n;j (G7X7t7X7T17T2)7 ] = 17273' T

Substitutingtheseinto Eq.1andcarryingout the solutionorderby orderwe obtainat
0(3)

N1 = Fexpli(x—cit)] + T exp[—i(x—cit)], @)

wheretheamplitudel” = "' (X, T1, T2) is to bedeterminedandc; is givenabove. At second
orderin & we obtainthat" hasthe functionalform of ' = (X — Hx Ty, T2), provided
that Hy = O(d), whereHy = Hyr + Hyj = 24 8ia(2R/15— S/3). SubstitutingEq.3into
the equationobtainedat third orderin & and eliminating its secularsolution we obtain
usingMATHEMATICA the following equationrelatedto the CGLE for the perturbation
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amplituder:
or . or 0T _ )
a—_l_z+|va—X—C{F+(Jlr+|J1i)W+(J2+|J4)|F| =0, (4)

whered;y = —8aR/3, J» =5/20R— 120R/5, Js = —1.

The characterof the perturbationdynamicsbeyondthe linear regime dependssolely
on the signof J,. WhenJ; > 0, the saturationof the amplitudel is ensured.This is the
caseof a supercritical(forward) bifurcation. WhenJ, < 0, the saturationdoesnot occur
(if higherordertermsin I arenot accountedor), andthe correspondingaseis thatof a
subcritical(inverted)bifurcation.

In view of thefactthatthe Benne equationto O(a) is beingconsideredpnemay be
puzzledby the resultobtainedfor J,, asgivenabove, dueto the emegenceof powersof
a differing by two. However, the sameresult containingtwo termsof differentsignsis
obtainedwhenBE is transformednto the equationdevoid of parameten. Therefore the
bifurcationaspredictedby the Benneg equationis supercritica[subcritical] (J, > 0 [J <
q)) if

R<R = [R>Rc (5)

5 5 ]
2/6a - 2v6a
respectiely. For instanceasfollows from Eq.5in the caseof waterfilms the domainof
supercriticalbifurcationis locatedalongthe Hopf curve for 0 < R < R; = 8.3894,andis
subcriticalfor R> Rc. Thisresultwill beverifiedbelow boththeoreticallyandnumerically

It shouldbe noted herethat the critical value of R from Egs.5is O(a~1), This is
formally outsidethe asymptoticrangeof R = O(1) for which the BE was systematically
derivedfrom the Navier-StokesequationsHowever, it represents characteristiof the BE
andis furtherverifiedto bewithin the boundsof thedomainwheresolutionsof the BE are
boundedor awaterfilm.

Numerical investigation of the Benney equation

In orderto carryoutavalidationof ourresultsobtainedabovefor thenonlineardynam-
ics of waterfilms, asdescribedy the Benng equationwe usetherelationshipbetweerd
anda atthestability thresholdobtainedrom Eq.5. Theseyield thatfor d < d. the primary
bifurcationis supercriticalwhile for d > d. it is subcritical,where

5/5 vi'/? 2/11

©= G o

(6)

Uponintroductionof the physicalpropertiesof waterinto Eq.6wefind thatd, = 1.28976x
10~? cm.
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Figure 1: Variation of the wave amplitude{ with E for various valuesof the

thicknessof the water film, as computedfrom Eq.1 and the modal Egs.7, as

{ =2\/a+a3. FromEq.1: squaresd = 1.1 x 10~%cm, *- d = 1.28 x 10~2cm,

o- d = 1.3x 10~2cm. Thesolid (dashedurvescomputedrom Eqgs.7correspond
to stable(unstable)solutions: 1- d = 1.1 x 10~%cm, 2- d = 1.28 x 10~%cm, 3-

d =1.3x10"%cm, 4- d = 1.32x 10-%cm. Thevertical dottedline correspondso

thelinearstability threshold E = 0. Thecurvesextendinginto thedomainof E < 0

shaw subcriticalbifurcationin supportof our theoreticalpredictions.

Equationl is numericallysolved alongwith periodicboundaryconditionsin the do-
main0 < x < 2rmandthe parameterf, S calculatedor waterfilms of varyingthicknesses
d rangingaroundthe critical value of d. given by Eq.6. The resultsof suchcomputa-
tionswererecentlypresentedh [5]. Bothregimesof traveling stationaryandnonstationary
waveswerefound. Herewe are concernedvith numericalvalidation of our asymptotic
analysisin the caseof the primarybifurcationof BE.

Figure 1 displaysthe variationof the wave amplituderepresentedy the normalized
peak-to-pealsizeof the wave { = (hmax— hmin)/ (hmax+ hmin) with the aspectratio o, as
presentedh termsof themeasuref thedistancerom criticality E = (ay — o) /oy, where
oy is the critical value at the Hopf stability thresholdfor the specifiedfilm thicknessd.
Consistentlywith ourtheoreticapredictionanadeabove,thewave amplitudeexpressedby
{ tendsto anonzerovalueof { = 0.259whena — ay in thecaseof d = 1.3 x 10~2cm. The
branchof this curve thatextendsinto the domainof negative E correspondindo a > ay,
which constituteghelinearly stabledomain. This fact providesthe numericalevidenceof
the subcriticalsolutionandverificationof the theoreticalresults,Eqs.5. Furthermorethe
resultscorrespondindo d = 1.1 x 10~%cm areconsisteniith the predictedsupercritical
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characteof the primarybifurcationandthevalueof { decrease® zerowith decreasinde

({ — 0asa — ap). Thecurve correspondingo d = 1.28 x 10~%cm represents supercrit-
ical caseaccordingto Eq.5andbendsdown in thevicinity of E = 0, asif it werepointing
to thereferencepoint of the graph. However, we notethatonecannotnumericallyresole
the questionwhetherit actuallyhits the referencepoint. Thus,in orderto furtherinvesti-
gatethe subcriticaldomainandits characteristicswe investigatea two-modedynamical
system.We notethatthe subcriticaldomain(locatedabove the Hopf curve for R > R;) is

particularly difficult to determineas numericalcontinuationmethodsemployed on pde’s
like Eq.1arecomputerintensie.

Stability analysis of a truncated bimodal dynamical system

In arecentpapel3] demonstratethevalidity of alow-ordermodalexpansionwith re-
spectto thenumericallysolved BE. Furthermoreatwo-modemodelwasfoundto coincide
with the numericalsolutionalongthe Hopf curve separatinghe regionsof linear stability
and of boundedsolutionsof the BE. Thus, in orderto further investigatethe subcritical
domain,we investigatea truncatedwo-modedynamicalsystemdeducedrom the BE.

Considerasolutionof Eq.1in theform of atruncatedourierseriesh(x,t) = 1+
SN, [zn(t) exp(inx) + Zn(t) exp (—inx)]. Substitutinghisinto Eq.1,truncatingit to N = 2,
representinghecomplex amplitudesn theform z, = a, exp(i6,), andemploying thephase
relationshipp = 206, — 6, yieldsto third orderof nonlinearity

& = B11181 + (B121COSP— 4sing)aray + a1 (13185 + P13283),

& = B21182 + (B221COSP+ 4sing)aZ + ap(B23182 + B23283), (7
- : _ a2
@= (—2B121SiN@— 8cosp)az + (—PB221SiN@+ 4Ccosy) a—; — (a5 —a2),

wherefnji = o (MnjiR— NnjiS) andMji, Nnji areconstantsleducedrom Eq.1.

Traveling waves of the systemcorrespondo fixed pointsof the reducedpolar Eqgs.7
with aconstantnonzerophasedifference(a; = a; = @ = 0). Closeto the Hopf bifurcation
we assumehatthe modalamplitudesareboth smallandorderedasa; — €a;, a, — €2ay.
Thus,the phaseavolutionis dominatedby the secondermin theright-handsideof Eq.7¢

4
tang® = B cong + O(e?), B1318% = —(B111+ K182) 8)

wherea; is determinedrom a quadraticequation
K1B23185 + (B111B231— B131B211+ K1K2)a2 + Br11K2 = 0, ©)

with K1 = B121C0sP* — 4sin@*, K2 = Boo1c0SE* + 4sing.
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Recallthatthe Hopf bifurcationat the stability thresholds definedby 8R/15= 2S/3
whichis 111 = 0. Consequentlythe amplitudeof the nonzeroTW is deducedrom Eq.9
toyield

2 = (B131B211— K1K2) By - (10)

A zerovalueof ay yieldstheboundanbetweerthesubcriticalandsupercriticabifurcations
whichis foundto beidenticalto the criterionobtainedn Eq.5.

The domainof existenceof the subcritical TW is delineatedy the zerovalueof the
discriminantof Eq.9. Stability of the subcritical TW is determinedrom the Jacobiarof
Eqgs.7at the correspondindixed points. The lower of the two TW yields a positive real
eigervalue correspondingo unstablesaddle-foci,whereasthe upper TW have negative
real partsandarestablesinks. Therefore asanticipatedthe bifurcationpointsdefinedby
thezerodiscriminantaresaddle-nodes We notethat[6] foundasimilar subcriticaldomain
of TW in theirinvestigatiorof travelingwavesof BE usingAUTO softwarefor waterfilms.
However, while our numericallyobtainedcurve of unboundedolutionsof the BE tendsto
thelinear stability thresholdcurve from belaw, their curve for blow-up intersectghe Hopf
curveatR=~ 8.9.
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