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Summary 

A time-domain exact solution for a coupled gravity dam-reservoir system is 
presented and applied to obtain the hydrodynamic pressure distributions on dams and 
dynamic responses when the gravity dam-reservoir system is subjected to ground 
motions.  It is assumed that the water included in the reservoir is incompressible and 
irrotational.  By these assumptions, the PDE governing the fluid domain is introduced 
and by satisfying relevant boundary conditions and solving the PDE, the equation 
depending on the dam displacements and by which the hydrodynamic pressure in the 
fluid domain can be calculated is obtained.    

Explicit time-domain exact equation, by which the hydrodynamic pressure exerting 
on the gravity dam and the dynamic responses of the dam can be calculated, is obtained 
by solving the dynamic equilibrium equation governing the dam structure in which the 
hydrodynamic pressure caused by dam-reservoir interaction is taken into account as an 
external force.  Numerical results based on the solution of an example are presented.   

Introduction 

Hydrodynamic pressure distribution on dams due to earthquake ground motion was 
first solved analytically by westergaard (1933) [1]. Simultaneously, Von karman 
proposed some semi analytic formulae to calculate the hydrodynamic pressure on dams 
during the ground motions.  Their approach became famous as added mass method which 
was a basic solution to the dynamic problems and designs with which many engineers 
and designers dealt.  Since then a number of studies have been carried out.   

Zangar (1952) used electric analog to analyze the hydrodynamic pressure 
distribution.  Chopra established a number of extensive investigations relevant to the 
subject in 1967.  He attempted to take some factors into account such as water 
compressibility and absorptive effect of bottom of the reservoir.  Chwang and Housner 
(1978a) extended the momentum-balance method developed by Von karman to 
investigate the hydrodynamic pressure distribution on dams with sloping faces.  Chwang 
(1978b) obtained the hydrodynamic pressure distribution on sloping dams based on the 
exact theory.  At the end of 1980s and the beginning of 1990s Tsai et al proposed a 
number of analytic and semi analytic time-domain formulae to calculate hydrodynamic 
pressure exerting on dams.  In all the investigation mentioned, the effect of surface waves 
was neglected.   
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Recently, because of the development and sophistication of the computers and 
numerical methods, investigators are interested in making contribution to the solution of 
the problem using numerical methods so, analytic and exact solutions are rare in the 
literature.  In this paper effect of the surface waves is taken into account.   

GOVERNING EQUATION AND BOUNDARY CONDITIONS 

Neglecting internal viscosity and assuming an incompressible and irrotational fluid 
included in the reservoir of a dam-reservoir system (fig. 1), a potential function such as 
Φ governing the water motion in the reservoir and satisfying following equation called 
the Laplace equation can be introduced:   
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Figure 1: A gravity dam-reservoir system 

The velocity components of the water particles can be obtained as below: 
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Where, v and w represent velocity components in the x and z direction respectively.  
Adopting linear theory of wave propagation and linearized form of Bernoulli equation 
and combining dynamic free surface boundary condition (DFSBC) and kinematic free 
surface boundary condition (KFSBC), free surface boundary condition is obtained:  
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Where, g and t represent the gravity acceleration and the time respectively.  There is 
no flow in direction perpendicular to the bottom of the reservoir so, it yields:   
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Progressive waves and standing waves, generated by the dam structure vibration, 
travel away from the dam satisfying following periodic boundary condition in far field 
extending to infinity:   

Φ(x , t+T) = Φ(x , t)                                                                                                (5) 

Standing waves decay with increasing x so, they should satisfy following condition:   

0),( ≈Φ tx   ,  x→∞                                                                                                   (6) 

Progressive waves satisfy following periodic boundary condition:   

Φ(x+L , t) =Φ(x , t)                                                                                                     (7) 

In the equations above; L and T represent the wave length and period of the waves 
respectively.  Applying theory of wave makers [2] and assuming simultaneous water 
particles vibration with the dam by a frequency equal to that of the first natural mode of 
the dam structure vibration, following kinematic boundary condition is obtained:   

ttyztu
x

tzxtzxv
n

nng 1
1

cos)()()(),,0(),,0( ωφ 







+=

∂
=Φ∂

−== ∑
∞

=

&&                     (9) 

Where, )(tug&  and )(ty&  represent velocity of the ground and the particles of the 

structure along the upstream face respectively and )(znφ  represents nth natural mode 
shape function of the structure and ω1 represents frequency of the first natural mode.  
Applying separation of variables to the Eq. 1 with respect to the linearity of the Φ:   
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Where, Ap and Gn are arbitrary coefficients.  kp and ks
n are the progressive and 

standing wave numbers respectively which, can be obtained by the following equations:   
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There are clearly an infinite number of solutions as ks to Eq. 11 and all are possible.  
Substituting Eq. 10 into Eq. 9 yields: 
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The hydrodynamic pressure field is related to the potential function by following 
equation: 

t
p

∂
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= ρ                                                                                                                 (14) 

Where, ρ represents density of the water.  Substituting Eq. 12 and Eq. 13 into Eq. 10, 
Eq. 14 can therefore yield the pressure distribution on the upstream face of the dam.  The 
generalized load, pn , exerting on the dam due to the hydrodynamic pressure, is shown as:   

),,0()()( tzxpztp nn == φ                                                                                      (15) 

SOLUTION TO THE INTERACTION EQUATION 

According to the fig. 1, the modal equilibrium equation governing the dam structure 
is expressed by following equation [3]:   
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Substituting Eq. 15 into Eq. 16 yields:   
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The coefficients: mnW ′  and nF ′  are defined as:   

∑
∞

=

′′′′
−

′′
=′

1
11

11 sin
cos

k k

nkmknm
mn A

QQt
A

QQtW ωρω
ωρω

                                            (18) 

)()()(' tPtPtF s
n

p
nn +=                                                                                             (19) 

The coefficients: pp
n and ps

n indicating the contribution of the surface waves are 
defined as:   
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The functions: nQ′  and nkQ ′′  are expressed as: 
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If the first M natural modes, contributing to the response of the dam, are taken into 
account, the equation for solving the dam-reservoir interaction will be expressed as:   
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The coefficients: mij and Kii and Li are defined by following equations [3]:   
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Solution to an example 

Here a dam-reservoir system subjected to 1940 Elcentro earthquake (fig. 2) is 
analyzed.  This system is specified as: h=180 m , m=36 ton/m , 27 .108437.9 mtonEI ×= .  
Solution to this example has been presented in the reference [2] considering 
compressibility of the water and neglecting the surface waves.  Here this example is 
solved by proposed equations, taking five natural modes for the structure and 35 modes 
(N=35) for the reservoir into account. Figure 3 shows the results obtained by the solution. 
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Figure 2:1940 North-South Elcentro earthquake records 
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Figure 3:Hydrodynamic pressure calculated by considering surface waves (B) , Hydrodynamic 
pressure calculated by neglegting surface waves(A) 

CONCLUSION 

From fig. 3 it can be concluded that the magnitude of the hydrodynamic pressure 
calculated by considering surface wave effects is sometimes three times as great as that 
calculated by neglecting surface waves.  Although surface waves affect on the 
hydrodynamic pressure noticeably, their effect on the total pressure obtained from the 
sum of the hydrostatic and hydrodynamic pressure is very low which approximately 
equals 2 percent of that. (This can be deduced from fig. 1 by adding a unit to the vertical 
axis).   
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