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Summary

This study presents a numerical stability analysis of a flow of electrically con-
ducting liquid driven by a rotating magnetic field in a cylindrical container. The aim
of the work is to investigate the previously often neglected effect of the strength of
the rotating magnetic field on the stability of the flow driven by the field. Linear hy-
drodynamic stability analysis has been carried out by Chebyshev-tau and Galerkin
spectral numerical methods. We find that the strength of rotating magnetic field has
a stabilizing effect on the flow. The obtained results may be of practical relevance
for certain semiconductor growth technologies from the melt.

Introduction

A rotating magnetic field (RMF) is usually generated by a system of multi-
phase alternating currents, like in a stator of an AC electromotor, and it has a certain
spatial pattern that rotates in time about some axis. When an electrically conducting
body is placed in such a RMF eddy currents are induced in the body. The induced
currents interact with the applied magnetic field and generate the electromagnetic
torque trying to entrain the body with the field rotation in order to reduce the vari-
ation of the magnetic flux through the body. Such inductors of RMF are used to
drive not only the rotor of AC motors, but they also have found application in ma-
terial processing technologies ranging from metallurgical to semiconductor crystal
growth processes where a conducting liquid like a molten metal or a semiconductor
melt plays the role of a rotor. In metallurgy RMF’s are usually applied for stirring
of molten metals. From crystal growth it is known that a relatively weak RMF can
significantly improve the quality of the grown material, e.g., by reducing the segre-
gation striation in the crystal caused by unstable thermal convection. On the other
hand, a too strong RMF can deteriorate the crystal quality due to hydrodynamic
instabilities in the melt. The objective of this work is to investigate numerically
the possible stabilization of a flow of an electrically conducting liquid driven by a
RMF in a cylindrical container by means of the RMF itself. This subject presents
an interest for single crystal growth applications from the melt and, more generally,
to the field of hydrodynamic stability.

The study is focused on the direct stabilizing effect of the RMF itself, originally
introduced by Priede & Gelfgat [1] and later employed by Moessner & Gerbeth [2]
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in numerical simulations. Till now most of the studies have considered the action
of the RMF on the liquid like on a solid body, reducing it only to the creation
of a torque. In this low-induction and low-frequency approximation the effect of
the RMF is defined only by the magnitude of the driving azimuthal force. In other
words, the related Taylor number is the only determining parameter of the problem,
besides the aspect ratio of the container. Here we take into account that the Ekman
pumping causing the liquid to circulate in the meridional plane, forces the liquid to
cross RMF flux lines so giving rise to an additional electromagnetic braking force.
Thus, we still keep the low-frequency approximation but we take into account the
field strength defined by the Hartmann number of the RMF as a second independent
parameter besides the magnetic Taylor number.

Problem formulation

Consider a liquid with electric conductivity σ, kinematic viscosity ν and den-
sity ρ filled in a cylindrical container with radius R and half-height H. The liquid
is subject to a uniform RMF whose free-space induction distribution can be written
in cylindrical coordinates as:

�B(�r, t) = B0
(
�er sin (φ−ωt)+�eφ cos (φ−ωt)

)
,

where B0 is the characteristic induction and ω is the angular frequency of field
rotation. The current induced in the liquid is governed by Ohm’s law for moving

medium �j = σ
(
�E +�v×�B

)
, where �v is the liquid velocity and �E is the strength of

the induced electric field which is governed by the first Maxwell equation�∇×�E =
− ∂�B

∂t . In order to find the induced electric field it is useful to proceed to the frame of
reference rotating at the angular frequency�ω =�ezω together with the field where
the flow velocity is �v′ =�v−�ω×�r but the magnetic field is steady. Thus the first
Maxwell equation governing the strength of the induced field�E ′ in this frame of
reference takes the simple form�∇×�E ′ = 0 implying that �E ′ = −�∇Φ, where Φ is
the electrostatic potential. Then Ohm’s law in the rotating frame of reference takes

the form �j = σ
(
�E ′+�v′ ×�B

)
= σ

(
−�∇Φ+(�v−�ω×�r)×�B

)
. Charge conservation

�∇ ·�j = 0 leads to the following equation for the scalar potential: �∇2Φ = �B ·�∇×�v. In
obtaining the above equation we have employed the low-frequency approximation
implying that there is no significant skin-effect µ0σωR2 � 1.

Further it is advantageous to represent both the RMF and the electrostatic po-

tential in a complex form �B(�r, t) = ℜ
[
�B0ei(φ−ωt)

]
, Φ(�r, t) = ℜ

[
Φ0ei(φ−ωt)]

where i is the imaginary unit and �B0 = B0
(
�eφ − i�er

)
and Φ0 are complex ampli-
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tudes of the magnetic field and the electrostatic potential, respectively. Then the
equation for the latter takes the form:

(
�∇2 − 1

r2

)
Φ0 = B0

(
∂vr

∂z
− ∂vz

∂r
+ i

∂vφ

∂z

)
. (1)

The electromagnetic force �f = �j×�B being a product of two quantities alternating
in time with frequency ω consists of two parts: a steady and an oscillating with
frequency 2ω one. As usual, the frequency ω is assumed to be sufficiently high so
that the inertia of the fluid precludes any significant fluid flow in response to the
oscillating part of the force which is thus henceforth neglected. In the following we
need only the azimuthal components of the force and its curl:

〈
fφ

〉
=

1
2

σB0

[
∂ΦI

0

∂z
+B0

(
rω− vφ

)]
,

〈
�∇×�f

〉

φ
=

1
2

σB2
0

∂vz

∂r
, (2)

where ΦI
0 = ℑ[Φ0]. Finally we use the low-induction approximation implying that

the azimuthal velocity of liquid rotation is negligible relative to the velocity of
rotation of the field: vφ � rω. Thus we neglect vφ in Eq. (2) for the azimuthal force
as well as in Eq. (1) for the electrostatic potential. The RMF has only a braking
effect on the meridional flow which is determined solely by the strength but not
by the frequency of the field. Thus, contrary to the azimuthal driving force the
meridional force is coupled to the meridional fluid flow. The boundary conditions

for the electrostatic potential at the insulating container wall S follow from �n ·�j0
∣∣∣
s
=

0: ∂Φ0
∂n

∣∣∣
s
= i(�ez ·�n)rωB0|s , where �n is the surface normal drawn outward to the

volume.

In the following we nondimensionalize all quantities by using R, R2/ν, ν/R,
and νωB0 as the length, time, velocity, and electrostatic potential scales, respec-
tively.

The fluid flow is governed by the Navier-Stokes equation with the electromag-
netic body force defined by Eq. (2) and the incompressibility constraint. Since
the time-averaged electromagnetic force is axisymmetric we first search for an ax-
isymmetric base flow whose stability is to be analyzed. Therefore we divide the
velocity field as �v = v�eφ +�u, where v and �u are the azimuthal and meridional flow

components, respectively. To satisfy the incompressibility constraint�∇ ·�u = 0 we
introduce a stream function Ψ such that �u =�∇× (�eφΨ) = −�eφ

r ×�∇(rΨ). Then tak-
ing the azimuthal components of the Navier-Stokes equation and of its curl we end
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up with the dimensionless equations:

∂v
∂t

+
1
r
(�u ·�∇)(rv) = ∆φv+Tm

〈
fφ

〉
, (3)

∂ζ
∂t

+ r(�u ·�∇)
(

ζ
r

)
− 1

r
∂v2

∂z
= ∆φζ+Ha2 ∂uz

∂r
(4)

where ∆φ =
(
�∇2 − 1

r2

)
; and ζ =

(
�eφ ·�∇×�u

)
= −∆φΨ; Tm = B2

0R4ωσ
2ρν2 is the mag-

netic Taylor number characterizing the strength of the azimuthal driving force;

Ha = B0R
√

σ
2ρν is the Hartmann number characterizing the braking effect of the

RMF on the meridional flow. The azimuthal component of the time-averaged elec-

tromagnetic force in the low-induction approximation is
〈

fφ
〉

= r− ∂ΦI
0

∂z . The cor-
responding Eq. (1) for ΦI

0 takes the form ∆φΦI
0 = 0. At the container wall S there

are no-slip and impermeability conditions: v|s = Ψ|s = ∂Ψ
∂n

∣∣∣
s
= 0. The boundary

condition for ΦI
0 takes the form: ∂ΦI

0
∂n

∣∣∣
s
= nzr. Axial symmetry implies that v and Ψ

as well as ζ must be odd functions of r and thus their power series expansion can
contain only odd powers of r. This constraint is taken into account in the following
numerical approximation of the problem.

Numerical method

The problem is solved by a Galerkin-Chebyshev spectral numerical method.
We first transform the axial coordinate as z → zA, where A = H/R is the aspect
ratio, in order to get the transformed z into the range [−1;1] and search both the
azimuthal velocity velocity and the stream function as:

v(s)(r,z, t) =
M

∑
m=0

N

∑
n=0

vm,n(t)v2m+1(r)v2n+s(z), (5)

ψ(s̄)(r,z, t) =
M

∑
m=0

N

∑
n=0

ψm,n(t)ψ2m+1(r)ψ2n+s̄(z), (6)

where the Galerkin basis satisfying the boundary and symmetry conditions are de-
fined in terms of Chebyshev polynomials Tk(x) as:

vk(x) = Tk(x)−Tk+2(x),
ψk(x) = (k + 3)Tk(x)−2(k + 2)Tk+2(x)+ (k + 1)Tk+4(x).
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Figure 1: Maximal dimensionless values of the azimuthal velocity and stream func-
tion versus Hartmann number for magnetic Taylor number Tm = 105 and aspect
ratio A = 1.

The subscripts s and s̄ = 1− s are used to denote the symmetry of the solution with
respect to the midplane where s = 0 and s = 1 correspond to mirror-symmetric and
-antisymmetric solutions, respectively. Note that in this notation the base flow has a
s = 0 symmetry that ensures separation of vertically symmetric and antisymmetric
perturbations in the following. Upon substituting series (5,6) into Eqs. (3,4) and
projecting both equations onto basis functions v2m+1(r)v2n+s(z) and ψ2m+1(r)ψ2n+s̄

for m = 0,1...,M and n = 0,1, ...,N, respectively, we obtain an algebraic system of
equations for the unknown coefficients vm,n and ψm,n.

For aspect ratio A = 1 and no braking effect (Ha = 0) the method was found to
yield the instability threshold, i.e., the critical magnetic Taylor number and critical
frequency of the instability, with an accuracy of about seven digits when 24 and 44
basis functions were used in radial and axial directions, respectively [3].

Numerical results

The results plotted in Fig.1 show that an increase of the braking effect for in-
creasing Hartmann number reduces the meridional flow as expected. On the other
hand, it leads to an increase of the rate of azimuthal flow for a fixed magnetic Taylor
number. The latter effect of acceleration of the azimuthal flow with suppression of
the meridional one results from the reduced advection of the angular momentum of
the primary azimuthal flow by the reduced secondary one that actually determines
the magnitude of the flow in the strongly nonlinear regime under consideration. Re-
garding flow stability an increase of the Hartmann number results in the stabiliza-
tion of mirror-symmetric perturbations accompanied first by a slight destabilization
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Figure 2: Critical magnetic Taylor number (left) and critical frequency (right) ver-
sus the Hartmann number for axially symmetric (even) and antisymmetric (odd)
instability modes in a cylindrical container of aspect ratio A = 1.

of the anti-symmetric mode as illustrated on Fig 2. Nevertheless for weak magnetic
fields the anti-symmetric mode remains more stable than the symmetric one. A no-
ticeable stabilization of the anti-symmetric modes starts at Ha ≈ 20 whereas for
the symmetric part it could be attributed to start at Ha ≈ 5. With increase of the
Hartmann number the instability switches from the symmetric to the antisymmetric
mode which determines the instability at higher Hartman numbers. In this way the
linear stability of the flow can be increased with respect to axisymmetric perturba-
tions from the critical magnetic Taylor number Tmc ≈ 1.6×105 at weak magnetic
fields (Ha � 1) to about Tmc ≈ 2×105 at Ha = 30.

An advantage of this stabilization method for, e.g., crystal growth applications
is that it can be implemented using the inductor of the RMF alone without installing
an additional magnetic system for a superimposed DC magnetic field. On the other
hand, a limitation of the considered stabilization is the often limited maximal at-
tainable strength of the RMF.
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