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Boundary layer in a moderately thick plates under creep-damage
conditions

H. Altenbach, K. Naumenko!

Summary

The aim of this presentation is to recall the governing equations of creep mechanics,
to compare the long-term predictions based on the three-dimensional approach and a two-
dimensional plate model, and to discuss the possibilities and limitations of each approach
in connection with creep-damage analysis. In the first part we summarize the basic features
of creep behavior in metals and alloys, introduce the widely used Kachanov-Rabotnov-
Leckie-Hayhurst material model and demonstrate the description possibilities for stress
states which are typical for thin-walled structures. In the second part, we discuss the quasi-
static initial-boundary value problems of creep. Finally, we use the ANSYS finite element
code in order to simulate the time-dependent behavior of different thin structures under
creep-damage conditions. Based on the numerical examples we make conclusions regard-
ing the boundary layers as well as the applicability of the shell and the solid type finite
elements to the creep analysis of engineering structures.

Introduction

If thin-walled metallic structures (beams, plates, pipes, pipe bends, etc.) operate at ele-
vated temperatures the behavior of metals and alloys is primarily determined by irreversible
time-dependent creep-damage processes. In order to estimate the long-term behavior it is
important to understand the time-dependent stress redistribution and damage growth, par-
ticularly in the zones of nozzles, pipe connections and welds. The aim of this presentation
is to analyze the boundary layer stress redistributions in moderately thick plates. Boundary
layer solutions are usually discussed for elastic moderately thick plates [10] or laminated
composite plates [4].

In what follows we study the evolution of boundary layers as a consequence of creep-
damage material behavior. Based on the results of a solid type finite element analysis we
show that the “second order effects” such as transversal normal and shear stresses play an
important role in long-term failure analysis of thin-walled structures. One possibility to
model the creep-damage behavior is the continuum damage mechanics (CDM), see, e.g.,
[6]. As usual, an important step in the analysis of such structures is to select a structural me-
chanics model and to specify the type of finite elements. One way is a "three-dimensional
approach”. This approach seems more preferable for creep analysis, since the existing con-
stitutive models of creep are developed with respect to the Cauchy stress and strain (rate)
tensors and the proposed measures of damage (scalars or tensors of different rank) are de-
fined in the three-dimensional space. Another way is the use of the classical structural
mechanics equations of beams, plates and shells. This approach often find application be-
cause of simplicity of model creation, smaller effort in solving non-linear initial-boundary
value problems of creep, and easily interpretable results.
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Basic material behavior equations and structural mechanics models

The commonly used phenomenological model characterizes the secondary creep rate
by the power law stress function and includes the effect of tertiary creep by means of the
single scalar valued damage parameter [§]
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In this notation € is the creep strain rate tensor, ¢ is the stress tensor, o7 is the first princi-
pal stress, E is the second rank unit tensor and w is the damage parameter. The weighting
factor « characterizes the influence of the principal damage mechanisms (or-controlled,
om-controlled or o,ps-controlled). a, b, n, k and [ are material constants, which are de-
termined from creep tests at a constant temperature. The model (1) ignores the effects of
primary creep. The basic mechanisms of the creep-damage processes in metals and alloys
at elevated temperatures above 0.4 of the melting temperature are briefly discussed, e.g.,

[5].

An example of application of Egs. (1) is presented for the 316 stainless steel at 650°C
in [2]. It was shown that the considered stress states and the stress values provide the same
secondary creep with the same minimum creep rates. The tertiary creep responses are quite
different and depend significantly on the kind of the applied stress state [7]. The shear strain
behavior depends not only on the value of the applied shear stress, but more significantly
on the value of the normal stress. The change of sign of ¢ leads to the considerable change
of the shear strain response.

The stress states with combined action of normal tensile (compressive) stress and small
shear stress are typical for transversely loaded beams, plates and shells. The creep response
of transversely loaded beams is discussed in [2], [9]. It was shown that the through-the-
thickness distribution of the transverse shear stresses differs from the classical parabolic
one. Nevertheless, by formulation of suitable constitutive equations for the shear force, the
Timoshenko type beam theory can be applied to the creep-damage analysis [1]. The results
for the life-time estimation agree well only in the case of the von Mises equivalent stress
oM controlled tertiary creep. For the case of the o7 or 0, controlled damage evolution the
shell and the solid models lead to significantly different results.

Various approaches to derive a shell theory have been developed within the assumption
of elastic or viscoelastic material behavior. As far as we know, a ”closed form” shell theory
in the case of creep does not exist at present. The principal problem lies in establishing
the constitutive equations of creep with respect to the shell type strain measures, i.e. the
membrane strains, changes of curvature and transverse shear strains. Although, a general
structure of such equations can be found based on the direct approach, e.g. [3], the open
question is the introduction of appropriate damage measures as well as the identification of
damage mechanisms under the shell type stress states. Depending on the type of the applied
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variational equation (e.g. displacement type or mixed type) and the type of incorporated
cross-section assumptions, different two-dimensional versions of general equations of the
theory of elasticity with a different order of complexity can be obtained (i.e. models with
forces and moments or models with higher order stress resultants). Various types of finite
elements which were developed for the inelastic analysis of shells are reviewed in [12].
Let us note that if studying the creep behavior coupled with damage, the type of assumed
cross-section approximations may have a significant influence on the result. For example,
if we use a mixed type variational equation and approximate both the displacements and
stresses, a parabolic through-the-thickness approximation for the transverse shear stress
or a linear approximation for the in-plane stresses is in general not suitable for the creep
damage estimations [2].

FEA of a plate based on solid and shell elements

In order to compare both shell and three-dimensional models we perform a FEA of a
plate. As an example we selected a square plate with I, = I, = 1000 mm, & = 100 mm,
loaded by a pressure g = 2 N/mm?2 uniformly distributed on the top surface. The edges
x = 0 and x = [y are simply supported and the edges y = 0 and y = I, are clamped. Note
that the displacement based finite element method allows only to prescribe the kinemati-
cal boundary conditions. According to the first order shear deformation type plate model
we can specify the vectors of midplane displacements u(x,y) = ur(x,y) + nw(x,y) and
cross-section rotations @(x,y) on the lines x = const or y = const. Applying such a
model and assuming infinitesimal cross-section rotations the displacement vector U(x,y,z)
is usually assumed to be U(x,y,z) =~ u(x,y) + z¢(x,y) X n,¢ - n = 0. In the case of the
three-dimensional model the displacement vector U = Ut(x,y,z) + W(x,y,z)n can be
prescribed on the planes x.,y,z or x, Y.,z of the plate edges x = x or y = y.. Here we dis-
cuss two types of the clamped edge conditions. For the first type (TYPE I) we assume the
vector of in-plane displacements U to be zero. The deflection W is zero only in the points
of the plate mid-surface. In the second type (TYPE II) the whole displacement vector U is
assumed to be zero in all points which belong to the plate edges.

The creep-damage analysis has been performed using the ANSYS finite element code
after incorporating the material model (1). The time step based calculations were performed
up to w = wx = 0.9, where wy is the selected critical value of the damage parameter.
Figure 1 illustrates the results of the computations, where the maximum deflection and the
maximum value of the damage parameter are plotted as functions of time. From Fig. la
we observe that the starting values of maximum deflection as well as the starting rates of
the deflection growth due to creep are approximately the same for the shell and the two
solid models. Consequently the type of the elements (shell or solid) and the type of the
applied boundary conditions in the case of the solid elements has a small influence on the
description of the steady-state creep process. However, the three used models lead to quite
different life time predictions. The difference can be clearly seen in Fig. 1b. The shell
model overestimates the time to failure, while the result based on the solid model depends
significantly on the type of the clamped edge boundary conditions. In the case of the TYPE
IT clamped edge the damage parameter vs. time curve is too abrupt and the predicted time
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Figure 1: Time variations: a maximum deflection; b damage parameter

to failure is four times shorter compared to those based on the shell model. All considered
models predict the zone of maximum damage to be in the midpoint of the clamped edge on
the plate top surface.

The creep response of a structure is connected with the time-dependent stress redistri-
bution. If the applied load and the boundary conditions are assumed to be constant and the
effect of tertiary creep is ignored, then an asymptotic stress state exists, which is known
as the state of stationary creep [11]. If tertiary creep is considered, then stresses change
with time up to the critical damage state. It is clear that the damage growth and the tertiary
creep behavior of the considered plate is controlled by the local stress state in the vicinity
of the clamped edges. Figure 2 illustrates the stress states in the midpoint of the clamped
edge with the coordinates are x = I, /2,y = 0. Four components of the stress tensor (two
remaining components are zero due to symmetry conditions) are plotted as functions of the
normalized thickness coordinate. The starting elastic distributions (solid lines) as well as
creep solutions at the last time step (dotted lines) are presented. The maximum starting
stresses obtained by use of three considered models are the normal in-plane stresses oy
and oy, (the stresses which results in the maximum bending and twisting moments in the
clamped edge), Fig. 2. These in-plane stresses remain dominant during the whole creep
process for the used shell and solid elements. Therefore, all the applied models predict
the damage evolution in the zone of the clamped edge on the plate top side. However, the
influence of the “second order” stresses (stresses which are usually neglected in the plate
theories) is different and depends on the type of the boundary conditions. For the TYPE
I clamped edge the effect of the transverse normal stress 0, decreases with time and has
negligible influence on the stress state. In contrast, for the TYPE II clamped edge the ini-
tial transverse normal stress remains approximately constant, while oy, relaxes with time as
consequence of creep. The transverse normal stress becomes comparable with the bending
stress and cannot be considered as the second order effect anymore.

Let us compare the finite element results for the mean stress and the von Mises equiva-
lent stress. Figure 3a shows the corresponding time variations in the element A of the solid
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Figure 2: Local stress state in a midpoint of the clamped edge vs. thickness coor-
dinate: a TYPE I clamped edge; b TYPE II clamped edge

model for the TYPE I and TYPE II boundary conditions. TYPE II boundary condition
leads to a lower starting value of the von Mises stress and a higher starting value of the
mean stress when compared with those for the TYPE I boundary condition. In addition, for
the TYPE II clamped edge the mean stress rapidly decreases within the short transition time
and after that remains constant while the von Mises stress relaxes during the whole creep
process. With the relaxation of oy the stress state tends to o = 0, E. The relatively high
constant value of ¢y, is the reason for the obtained increase of damage and much shorter
time to fracture in the case of the TYPE II clamped edge (see Fig. 1b). Note that the above
effect of the mean stress has a local character and is observed only in the neighborhood of
the edge. As Fig. 3b shows the value of the transverse normal stress decreases rapidly with
increased distance from the boundary.
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Figure 3: Transversely loaded plate: a von Mises equivalent stress and hydrostatic
stress vs. time, element A of the clamped edge; b transverse normal stress 0, in
elements along the line AB
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