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Summary 

 The computational approach to the study of three-dimensional 
instabilities of flows related to bulk crystal growth from melts is described. The 
flow in a hydrodynamic model of the Czochralski crystal growth is taken as the 
target problem. Preliminary test calculations and an example of instability in the 
Czochralski system are reported. 

 

Introduction 

 Most technological processes of crystal growth from bulk of the melt are 
carried out in axisymmetric configurations. However, instabilities of the melt 
flow usually lead to three-dimensional effects (e.g., spoke patterns), which 
strongly affect the quality of the growing crystals, and therefore are strongly 
undesirable. It is necessary, therefore, to predict the appearance of instability, to 
understand its physical mechanisms, and to find the flow control means capable 
of stabilizing the flow. The problem itself, when approached by computational 
fluid dynamics tools, is very complicated. As a rule, three-dimensional unsteady 
solvers are called for, which lead to heavily CPU-time consuming computations 
and can hardly provide the necessary answers when parametric analysis is 
needed. Another possibility is the three-dimensional stability analysis of an 
axisymmetric basic state flow, which is obtained as a numerical solution of the 
corresponding nonlinear axisymmetric problem. This leads to a generalized 
complex eigenvalue problem, which is the bottleneck for all the numerical 
analyses of such a kind. Overcoming this difficulty allows one to perform an 
effective parametric study of possible flow instabilities and provide the necessary 
practical answers. In the case of crystal growth, for example, stabilizing the 
primary instability would mean stabilizing the process as a whole, which is 
extremely desirable for various crystal growth technologies. 

The present contribution describes our previous and novel results on 
three-dimensional stability of axisymmetric flows in the crystal growth related 
configurations. In the model, problems considered the flows that were driven by 
buoyancy convection, thermocapillary convection or rotation (see [1-5] and 
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references therein). These problems were solved mainly by the global Galerkin 
method with specially constructed non-orthogonal basis functions satisfying all 
the boundary conditions and the continuity equation [3]. The global Galerkin 
approach is well suited for flows in simple rectangular or cylindrical geometries, 
though cannot be applied to much more complicated configurations of the crystal 
growth processes.  

To approach the practically important problems, we started to develop a 
stability solver for numerical methods based on the discretization of the flow 
region. At the moment, most of our knowledge gained is for the finite volume 
discretization, but there are also some results obtained by the spectral element 
method. Similar stability solvers were described in several publications published 
during the last decade (not cited here due to the lack of space), but none of these 
solvers seem to be capable of handling the complicated crystal growth related 
problems. 

In the following we briefly describe the problem and the methods used, 
report several comparisons between results obtained by the Galerkin and finite 
volume solvers, and show also examples of stability studies for the Czochralski 
crystal growth model [6]. 
 

Description of the problem and methods of solution 

 We consider the momentum, continuity and energy equations describing 
the non-isothermal motion of Newtonian incompressible fluid in the Boussinesq 
approximation. Assuming that the problem is completely axisymmetric and the 
basic axisymmetric flow U(r,z), P(r,z) and T(r,z) can be calculated, we consider 
the three-dimensional infinitesimally small perturbations of the basic state. The 
perturbations are defined as {u(r,z),p(r,z),τ(r,z)}exp[i(kθ+λt)]. The linear 
stability analysis leads to the eigenproblem for the time increment λ. It is a well 
established fact that the resulting eigenproblem is defined in the (r,z) plane and 
contains the azimuthal wavenumber k as an additional governing parameter.   
 Assuming that the flow region is discretized by a certain grid and that the 
discretization in a node (ri,zj) is known, the stability problem has the following 
form 
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  (1) 

Here [·]ij denote the discretization in a node, Gr and Pr are the Grashof and the 
Prandtl numbers respectively. Equations (1) apply to all the inner nodes. 
Additional equations describing the boundary conditions must be supplied in all 
the boundary nodes. These equations can contain thermocapillary forces, rotation 
of the boundaries (i.e., of the crystal or the crucible), as well as thermophysical 
parameters describing heating or cooling of a certain boundary. 
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 Obviously, the complete set of the linearized equation leads to the 
generalized eigenproblem 

xx BA λ=      (2) 
where x is the vector of unknowns, and A and B are the matrices. Due to the 
continuity equation and the boundary conditions the matrix B is singular, so that 
problem (2) cannot be transformed into a regular eigenvalue problem. 
 The whole computational process is separated into two main blocks. The 
first block yields the steady axisymmetric base state solution and the second one 
computes several leading eigenvalues of the linearized stability problem. In our 
codes the base state solution is calculated by the Newton iteration with the 
parameter continuation where necessary. The Newton method is formulated in 
two versions: Jacobian-full and Jacobian-free. Each Newton iteration needs a 
solution of systems of linear equations, which is solved by the BICG(2)stab 
algorithm. Our experience shows that the calculation of steady state, even for 
complicated cases, does not cause significant problems if a proper parameter-
continuation is chosen. The iterative solver can be replaced or optimized for a 
certain problem, however a possible speedup seems to be negligible compared 
with the CPU time consumed by the eigenvalue solver. 
 The eigenproblem (2) is solved by the Arnoldi iteration in the shift-and 
inverse-mode 

( ) ( )σ−λ=µµ=σ− − 1,1 xxBBA    (3) 
where σ is a shift. It should be noted that this approach succeeds when the shift 
σ, which must be a complex, is chosen close to the leading eigenvalue λ. It is an 
easy task for benchmark problems, where the estimate of λ is known. However, it 
is an additional difficulty for each new problem where no information on the 
stability properties of the flow is available.  
 Each Arnoldi iteration needs the solution of linear equations system  
(A – σB) x = b. The usual approach is an iterative solution of these equations. 
The iterative solution usually needs too many iterations, because the right hand 
side vector b changes completely from one iteration to another, so that no good 
initial guess for the solution can be supplied. We have realized another approach, 
in addition to the iterative one, which builds the LU decomposition of the sparse 
matrix (A – σB) . This consumes much more computer memory, thus making the 
Arnoldi iterations very fast. This approach can fail however, when the matrix is 
ill-conditioned. Note, that the iteration can diverge as well, so that two different 
linear solvers give us a possibility to attack more problems.  
 
 

The target problem: hydrodynamic model of Czochralski crystal growth 
 
 For the forthcoming stability studies we choose the model of the 
Czochralski growth [6], sketched in Fig.1. The melt flow takes place in a circular 
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crucible, which can be heated or cooled arbitrarily at its bottom and sidewall. The 
bottom and the sidewall are no-slip. The crucible can rotate around its axis. The 
central part of the upper boundary simulates the growing crystal. It is no-slip and 
can rotate independently from the crucible. Another part of the upper boundary is 
the melt surface, on which the thermocapillary force can act. Therefore the flow 
is driven by (i) buoyancy convection, (ii) thermocapillary convection, and (iii) 
rotation. Clearly, this is a simplified model, which does not account for many 
important phenomena, however allowing us to study the main features of flow 
instability. This model is implemented in our newly developed code, and the test 
calculations are being carried out.   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Sketch of the Czochralski hydrodynamic model 
 
 At the first stage of the test calculation we validate the flows driven by 
buoyancy convection only, or thermocapillary convection only, or only by 
rotation. For the buoyancy convection and rotation we have well validated results 
of [2,4] for the comparison. For the thermocapillary convection we compared 
with the results of [7,8] for the liquid bridges, which relates to the floating zone 
crystal growth technique. All the test calculations show that we can obtain 
correct critical values of the governing parameters, which are within 5% 
deviation with the previously published results, if the finite volume grid is fine 
enough. Usually we need more than 80 nodes of the stretched grid in one spatial 
direction to obtain the reasonable accuracy.  
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z = H z = 0.9H

 For the preliminary calculation we studied the configuration considered 
in [9]. In this case the crucible sidewall is heated by a constant heat flux and the 
upper surface is cooled by the radiation to the surrounding air. The governing 
parameters are: crucible aspect ratio H/Rcrucible = 1.957, the relative crystal radius 
Rcrystal/Rcrucible = 0.5, the Prandtl number Pr = 13.6, the Grashof number 
Gr = 2.62×105, the crystal Reynolds number Recrystal = 154.5, the dimensionless 
sidewall heat flux Q = 0.05, and the upper surface radiation number Rd = 0.34. 
Further details are given in [9]. The axisymmetric basic state flow pattern for 
these parameters is shown in Fig.2. According to the results of [9] this flow is 
unstable and transforms into a 3D pattern with 5-fold azimuthal symmetry. This 
would imply the instability with the azimuthal wavenumber k = 5. Our 
calculations show that this mode is really the most critical, i.e. the real part of its 
time increment λ is the largest. The corresponding pattern of the temperature 
perturbation is illustrated in Fig.3. The stability analysis performed for different 
azimuthal modes showed that the flow is entirely unstable, also for modes with 
the azimuthal number k varying from 1 to 6. Further study showed that the 
configuration considered cannot be stabilized by a decrease of the value of the 
sidewall heat flux, since the "stable" value of Q would reduce the melt 
temperature below the melting point, which is obviously impractical. This flow 
possibly can be stabilized by other means, for example by the differential rotation 
of the crucible or by different heating of the boundaries. The described stability 
study is aimed to the search of such stabilizing conditions, which is the main goal 
of our forthcoming studies. 

azimuthal velocitystream function temperature

 
Fig.2. Pattern of the steady axisymmetric 
flow for the Czochralski growth problem 
considered in [9].  

Fig.3. Isolines of the 3D perturbation of 
the temperature at the free surface and 
at the cross-section below it. 

 
 

Concluding remarks 
 
 It should be emphasized that the hydrodynamic Czochralski model 
described is chosen because of its highest complexity among other methods of 
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the crystal growth from melts. Our numerical approach can be easily transformed 
to study other configurations, e.g., Bridgman or floating zone techniques. The 
external flow control means, such as electromagnetic devices, can be also 
accounted for rather easy. 
 For the future, work is planned also to implement the effects of phase 
change in the model, calculation of the shape of capillary interfaces and 
calculation of the temperature distribution in the growing crystal. 
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