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Abstract An elasticity solution is obtained for a functionally graded beam subjected to transverse loads 
by using stress function method. The young modulus of the beam is assumed to vary exponentially 
through the thickness of the beam, and the Poisson ratio is held constant. By these assumptions the 
elastic coefficients of the problem vary exponentially that allows an exact solution for the elasticity 
problems By this method, all transverse loading that its intensity is zero at the two ends of the beam 
can be treated.. 
 
Introduction 
The concept of functinally graded materials (FGMs), i.e. composites with smoothly 
varrying constitutive properties, was first suggested by Niino and coworkers at the 
National Aerospace laboratory in Japan ([1, 2]). The Original idea was to manufacture 
super heat resistant components for use in the engines and airframe of supersonic 
plane, combining the heat resistance of ceramics with the structural properties of 
metals, an optimal non-homogeneous distribution of the second phase ceramic 
material was to be employed in this context.  
On the analysis of non-homogeneous grade structures, there had been relatively little 
investigation until recently. With the advent of FGMs though there has been a 
renewed in inhomogeneous elasticity. Although FGMs are highly heterogeneous, it 
will be useful to idealize them as continua with properties changing smoothly with 
respect to the spatial coordinates. This will enable obtaining close-form solutions to 
some fundamental solid mechanics problems. Aboudi et. al.[3, 4], developed a higher 
order micromechanical theory for FGMs (HOTFGM) that explicitly couples the local 
and global effects. Later the theory was extended to free-edge problems by Aboudi 
and Pindera [6]. Pindera and Dunn [7] evaluated the higher order theory by 
performing a detailed finite element analysis of the FGM. They found that the 
HOTFGM results agreed well with the FE results.  
There are other approximations that can be used to model the variation of properties 
in a FGM. One such variation is the exponential variation, where the elastic constants 
vary according to formulas of the type: c=c0ek. Many researchers have found this 
functional form of property variation to be convenient in solving elasticity problems 
[8]. For example, Sankar [9] obtained an elasticity solution for this type of 
functionally graded beams. In this paper we analyze a FGM beam as considered in [9] 
by a different method, using stress function. Also, we solve more General type of 
loading  than [12].  
� 

Elasticity solution 
 
Consider the FGM beam shown in Fig.1. It must be noted that the x-axis is along the 
bottom of the beam. The length of the beam is L and thickness is h. The width of the 
beam in the y-direction is taken as unity. The boundary conditions are like of a simply 
supported beam that are explained latter. The bottom Surface of the beam (z=0) is 
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subjected to normal traction with intensity equal to zero at the two ends. So, the 
Fourier series of dhghg this traction can be written as: 

∑−=−=
n

nnzz xpxp ησ sin)(                                                                                      (1) 

where 
L

nπη = , n=1,2,3,…                                                                                          (2) 

Fig.1. A FG Beam subjected to a arbitary loading that its intensity is zero at two ends. 
 
The upper surface, z=h is completely free of tractions, and the lower surface is free of 
shear tractions. In this paper the problem is more general than [12] that n is not 
necessary to be odd, and the loading can be symmetric/antisymmetric or any 
combination of them about the center of the beam. The loading given by Eq.(1) is of 
practical significance because any arbitary normal loading that its intensity is zero at 
x=0 and x=L, can be expressed as a Fourier series involving terms of the type 

xp nn ηsin . 

The differential equations of equilibrium are: 
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                                                                          (3) 

For satisfying these equilibrium equations it is sufficient that we have a arbitary stress 
function φ and then the stresses are defined as: 
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Now, we express all quantities as the sum of fractions which each fraction is related to 
a specifiec n . For example we have 
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n

nxxxx ,σσ                                                                                                               (5) 

From  the condition xpx nnnzz ησ sin)0,(, −=  we conclude that: 
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now by integrating, we have 
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n +++= η

η
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where for satisfying (6), some restrictions must be considered for )0(nf  and )0(nS . 

We must also have 0=zzσ  at the surface z=h, thus from relations (4) and (7) it is 
concluded that 
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Now, we can rewrite relation (7) as: 
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where for satisfying (6) we must have 

nn pf =)0( ,  0)( =hfn                                                                                               (10)                          

From (9) and (4) it can be obtained: 
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Although each stress field that is resulted from stress function defined at (9), satisfies 
equilbrium equations, in addition it is necessary that the resulting stress components 
produce compatible strain field. In two dimensional problems only compatiblilty 
equation is: 
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We assume state of plain strain, thus: 
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Also, the moduli is assumed to vary exponentially as 
zeEzEE λ

0)( ==                                                                                         (14)        
according to relations (13), (14), (12) and (4) it can be obtained 
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Now by inserting nφ  from (9) in (15), it can be resulted 
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As relation (16) must be valid for all values of x , thus: 
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0)()(2)( "2''''''' =+− zBzBzB nnn λλ                                                                     (19) 

At the two ends because of simply support condition we have: 
0),(),0( == zLwzw nn                                                                                 (20) 

0),(),0( ,, == zLz nxxnxx σσ                                                                            (21) 

where w  is the displacement in z-direction.(also we define u as displacement in x-
direction). By considering (11-a) and 0),0( =zwn  from (21), it can be concluded 

nnn bzbzB 21)( +=                                                                                         (22) 

By considering (11-a), Lzwn =),0(  from (21) and (22), the result is 

nnn azazA 21)( +=                                                                                        (23)    

By considering (12-b) and this fact that there is no shear at surfaces z=h and z=0, it 
can be resulted 
 0)0(' =nA , 0)(' =hAn , 0)0(' =nf  and 0)(' =hfn                                                     (24)                          

from (24) and (26) it can be concluded that 01 =a  or 

nn azA 2)( =                                                                                                 (25) 

Linear terms in stress function produce no stress. Thus by considering (25), (22) and 
(9), we drop out linear terms and rewrite stress function as 
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relation (15) is a 4th order ordinary diffrential equation and its solution obtained from 
combination of  four independent term. For solving this equation we assume the 
solution as z

n
nezf α=)( and insert it in the equation. Then we obtain a characteristic 

equation as: 
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If  (27) has four distinict real root, then we have 
z

n
z

n
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If  there is multiple root, we have terms like z
n

nex 1
1

αρ  and if there is imaginary root, 

we have terms like x
n

nex 1
1cos αβ  in (28). 

Four unknown constants 4321 ,,, nnnn ρρρρ  are determined from four conditions in (10) 

and (24). By obtaining these constants, the stress field is then known using (11). 
For obtaining displacement field we first calculate strain components. By assumption 
state of plain strain, according to (11), (13) and (29) we have: 
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But 
x

u
xx ∂

∂=ε , thus integration of (29) results 
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By considering 
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now from (37), first in (21) and (35) we conclude: 
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and from (37), second in (21) , (35), 38 and 0sin =Lη we conclude: 
0=a                                                                                                         (39) 

therefor: 

bxee
E

u
i

z
i

i

z
ii

ii +







++−−= ∑∑

−− ηρνναρ
η
ν

η
λαλα cos)1(

11 )()(2

2

2

0

                     (40) 

xee
E

w
i

z

ii

i

i

z

i

ii ii η
λα

ρν
λα

αρ
η
νν λαλα sin)1(

)1(1 )(2)(
2

2
0 












−
−−

−
+−= ∑∑

−−               (41) 

now it is necessary only to consider a boundary condition  for u, as a example 
0),0( =zu to determine constant b in (40) and then displacement field is known. 

Results in [12] are valid if 0),
2

( =z
L

u . If this condition considered and n assumed to 

be odd number then, 0
2

cos =Lη  and b must be zero. In this state the assumed 

displacement in [12] is valid.  
 
 
 
Conclusions 
An elasticity solution is obtained for simply supported functionally gradient beams 
subjected to sinusoidal transverse loading. The Poisson ratio is assumed to be a 
constant, and the Young’s modulus is assumed to vary in an exponential fashion 
through the thickness. Every loding that its intensity are zero at two ends, can written 
in a sinusoidal foureir series, and thus can be solved in this manner. 
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