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Summary

In the present study, we clarify the micro- to macroscopic deformation behavior of
semi-crystalline polymer by finite element method (FEM) analysis with a homogenization
method. The crystalline plasticity theory with a penalty method for the inextensibility
of the chain direction and the nonaffine molecular chain network theory were applied for
the representation of the deformation behavior of the crystalline and amorphous phases,
respectively, in the composite microstructure of the semi-crystalline polymer. A various
directional tension is given to the 2-dimensional plane-strain unit cell model of a composite
microstructure. The results reveal a highly anisotropic deformation behavior caused by the
rotation of the chain direction and lamella interface, which depends on the tensile direction
and manifests as substantial hardening/softening in an early stage of deformation.

Introduction

To enable the wide use of semi-crystalline polymers as structural materials, charac-
terization of their mechanical behaviors is indispensable. Semi-crystalline polymers have
a very complex hierarchical structure, and their microstructures are that of a two-phase
composite material consisting of crystalline lamella and amorphous layer. In the crystalline
phase, molecular chains are oriented in a specific direction along with the inextensibility
is enforced. Furthermore, spherulite is formed with a radial arrangement of broad thin
lamellae. Although, the deformation mechanisms of the microstructure strongly depend on
the directions of the molecular chains and the lamella interface, macroscopic deformation
behavior still exhibits initial isotropy [1].

In accordance with the above characteristics of semi-crystalline polymer, simplified
models have been proposed to reproduce the experimental results [2], [3]. In those studies,
interaction laws based on the Taylor, Sachs and self-consistent models were employed to
relate microscopic and macroscopic deformations. They reproduce the initially isotropic
response by modeling the aggregation of randomly oriented composite microstructures.
However, these models cannot be used to evaluate interactions between adjacent composite
phases.

We suggest a multi-scale model based on large-deformation FEM analysis with a
homogenization method [4], which can be used to evaluate the interaction between the mi-
crostructure and the heterogeneous deformation behavior on micro- to macroscopic scales.
The present investigation is mainly concerned with the characteristic deformation mecha-
nisms in single composite microstructures consisting of crystalline and amorphous phases
under various directional tensions.
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Constitutive Equation
Here, in order to express the elasto-viscoplastic deformation behavior of semi-crystalline
polymer, the crystalline plasticity theory [5] with the penalty method to introduce inexten-
sibility of the chain direction and the nonaffine molecular chain network theory [6] are
employed for crystalline and amorphous phases, respectively.

The total strain rate d;; is assumed to be decomposed into the elastic strain rate dfj and
plastic strain rate d? ;- With Hooke’s law for the elastic strain rate, the constitutive equation

that relates the rate of Kirchhoff stress S;; to strain rate becomes

. 1
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where D7, is the elastic stiffness tensor and o;; is the Cauchy stress.

The plastic strain rate d? ; in the crystalline phase is modeled using the crystal plasticity
theory [5], with the shear strain rate *,. on the ath slip system expressed by a power law
[7], as
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where o, is the reference strain rate in the crystalline phase, m is the strain rate sensitivity

exponent, g(“) is the resistance to slip, 7)) = Pi(f)aij is the resolved shear stress, P; f) =

(sga)mg.a) + mga)sg.a)) is the Schmidt tensor, and s{*) and m{* are unit vectors along the
slip direction and the slip plane normal, respectively. Here, the penalty method is employed
to approximately satisfy the inextensibility of the chain direction. The corresponding
constitutive equation of the crystalline phase is expressed as [8]
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where E. is the penalty constant which has a large value, and physically, it represents the

chain directional stiffness. ¢; is the unit vector of chain direction.

Subsequently, the plastic strain rate d? ; in the amorphous phase is modeled using a
nonaffine eight-chain model [6], with plastic shear strain rate ¥, [9], as

p _ Tpa 1 *_(A/ Al
iy \/57_*0—2]7 T = 01]01]

(-6

1
2 Fooo— e — ..
) s Oij = 045 Bz]m

;Ypa = ;YOa exp

1569

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science
26-29 July, 2004, Madeira, Portugal



Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press 1570

where 4, and A are constants, T is the absolute temperature, 7* is the applied shear stress,
§ = so+ap, sop = 0.077u/(1—v) is the athermal shear strength [10], p is the pressure, and
o is a pressure-dependent coefficient. Furthermore, B;; in Eq. (4) is the back-stress tensor
and the principal components are expressed, by employing the eight-chain model [11], as

1 VE -\ A
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where \? = (V2 + Vi + V) /3, V; is the principal plastic stretch, N is the average
number of segments in a single chain, C® = nkgT is a constant, n is the number of chains
per unit volume, kp is Boltzmann’s constant, and £ () = coth (z) — 1/ is the Langevin
function. In the nonaffine eight-chain model [6], the change in the number of entangled
points, in other words, the average number of segments N, may change depending on
the distortion ¢ which represents the local deformation of a polymeric material [6]. The
simplest expression of the number of entangled points is N = Npexp{c(l — &)} with
& = 1 in the reference state, and Ny is the number of segments in a single chain in the
reference state and cis a material constant.

Computational Model

Figure 1 illustrates the plane strain computational unit cell model in which crystalline
and amorphous phases are assumed to be stacked periodically. In order to represent micro-
to macroscopic deformation behavior, we employ the homogenization method [4]. For a
2-dimensional simulation, 2 slip systems, the chain slip and transverse slip, are modeled
and the coherent boundary condition is applied to the lamella interface. The angle differ-
ence is 8.9 — 0,0 = 120°, as indicated in Fig.1 [2]. The macroscopically homogeneous
deformations are applied by prescribing the average strain rates £y and E, or stress rates
D) 1 and Z‘g with respect to the coordinate directions x; and x5, respectively. In order to
investigate the anisotropic deformation behavior, rotation is given to the coordinates of a
unit cell, y; and y5 .

For a typical unit cell, which is the microscopic element of the two-phase material, a
macroscopically homogeneous strain rate Ey =107° /s is applied. The material parame-
ters are specified from references [2] and [6]. For the amorphous phase, E 4,0 /s0 = 23.7,
Asg/T = 58.3, a0 = 0.01, 40, = 1x1016/s, 59 = 71.9MPa, CF /5o = 0.07, /Ny = 2.83
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Figure 1: Computational Model for Homogenization Method
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and ¢ = 0.33, and for the crystalline phase, Ec,,y/g(c) =125, 50, = 1 x 1073 /s, g(c) =
8.0MPa, g = 2.5¢(¢) and 1/m = 9 are employed with temperature T = 296K. Here,
superscripts (c¢) and (t) represent chain slip and transverse slip, respectively. Furthermore,
in order to reproduce sufficient inextensibility and to carry out stable calculation, the
penalty constant E. = 10% is employed.

Results and Discussion

Figure 2 indicates the relationship between (a) true stress, (b) chain direction in the
crystalline phase, (c) lamella interface direction and true strain, respectively, under var-
ious directional tensions. Here, the volume fraction of the crystalline phase is fixed at
0.5. According to Fig.2 (a), deformation responses represents high anisotropy, which is
attributable to preferential slip of the chain slip system in the crystalline phase which has a
lower resistance of slip than other slip systems, and misalignment of lamella interface and
chain directions. Chain and lamella interface directions rotate to the tensile direction as
deformation increases. Due to the orientation of the chain direction in the tensile direction,
the stiffness of the crystalline phase is increased by the inextensibility of the chain direction.
Furthermore, the rotation of the lamella interface direction to the tensile direction causes
the increase of true stress because the crystalline phase supports the deformation resistance
of the overall unit cell.

In the case of 8,9 = 30°, true stress decreases at F5 ~ 0.25. When the chain direction
rotates from the initial state (6. = 150°) to the tensile direction, the chain direction aligns
the 135° which is the maximum shear stress direction. Then, the shear stress on chain slip
rises beyond prior state while the slip resistance does not increase [2]. As a result, softening
occurs in the crystalline phase.

Figure 3 indicates the relationship between mean stress in the (a) amorphous phase, (b)
crystalline phase and true strain, respectively. Because each phase is assumed to be layered
infinitely in a unit cell, uniform deformation occurs in each phase. For any tensile direction,
mean stress in the amorphous phase exhibits a higher value than that in the crystalline phase
in a later stage of deformation. In the case of 8,5 = 0°, compressive deformation along
the direction normal to the tensile deformation in the amorphous phase is restricted by
the hardened crystalline phase, and which causes a substantial increase of mean stress in
the amorphous phase. This suggests the onset of stress concentration in a region where
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0.0 0.5 E, 1.0 0.0 0.5 E, 1.0 0.0 0.5 E, 1.0
(a) Macroscopic True Stress (b) Chain Direction (c) Lamella Interface Direction

Figure 2: Deformation Behavior under Different Directional Tension
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(a) Mean Stress in Amorphous Phase (b) Mean Stress in Crystalline Phase
Figure 3: Mean Stress vs. True Strain

[0 Amorphous Phase
[ Crystalline Phase

02 03 04 05 06

Figure 4: Deformation Behavior of Microstructure

the lamella interface normal is in the loading direction at the initial stage of deformation;
this may lead to microscopic fractures. The same situation may occur in semi-crystalline
polymer.

Figure 4 indicates the deformation behavior of a two-phase composite microstructure
at different degrees of deformation for 6,5 = 30°, 150°. These results also indicate the
completely different deformation behavior. The lamella interface direction is symmetric for
the tensile direction but the chain direction in the crystalline phase is nonsymmetric, which
leads to a dramatic difference in plastic deformation behavior between the two cases. From
these results, principal stretch direction of the microstructure of semi-crystalline polymer
is differs considerably compared to the macroscopic tensile direction. This suggests that
even if the macroscopic boundary condition is uniform, the deformation imposed on each
composite phase is affected by the surroundings in order to satisfy the local compatibility
and equilibrium.

Conclusion

A series of computational simulations clarified the characteristic deformation behavior
of microstructural semi-crystalline polymer. The results are summarized as follows.

1. The microstructure of semi-crystalline polymer exhibits highly anisotropic defor-
mation behavior due to the preferential slip deformation of the chain slip system and
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the misalignment of lamella and chain directions.

2. Chain and lamella interface directions rotate to align the tensile direction as defor-
mation increases.

3. Orientation softening occurs in the crystalline phase when the chain direction aligns
the maximum shear stress direction due to the rotation caused by tension.

4. In the case that the lamella interface normal is in the loading direction, mean stress
of the amorphous phase substantially increases. It causes stress concentration and
leads to microscopic fractures of semi-crystalline polymer.

Acknowledgements

Financial support from the Ministry of Education, Culture, Sports, Science and Technology of
Japan through Grant-in-Aid for Scientific Research and Grant-in-Aid for JSPS Research Fellow is
gratefully acknowledged.

Reference

1. Bowden, P. B. and Young, R. J. (1974): “Deformation Mechanisms in Crystalline Polymers”,
Jounal of Materials Science, vol. 9, pp. 2034-2051.

2. Lee, B. J., Parks, D. M. and Ahzi, S. (1993): “Micromechanical Modeling of Large Plastic
Deformation and Texture Evolution in Semi-Crystalline Polymers”, Journal of Mechanics
and Physics of Solids, Vol. 41, pp. 1651-1687.

3. Van Dommelen, J. A. W., Parks, D. M., Boyce, M. C. Brekelmans, W. A. M. and Baaijens,
E P. T. (2003): “Micromechanical Modeling of the Elasto-Viscoplastic Behavior of Semi-
Crystalline Polymers”, Journal of the Mechanics and Physics of Solids, Vol. 51, pp. 519-541.

4. Higa, Y. and Tomita, Y. (1999): “Computational Prediction of Mechanical Properties of
Nickel-Based Superalloy with Gamma Prime Phase Precipitates”, Advance Materials and
Modeling of Mechanical Behavior, Vol. 111, pp. 1061-1066, Fleming Printing Ltd.

5. Peirce, D. Asaro, R. J. and Needleman, A. (1983): “Material Rate Dependence and Localized
Deformation in Crystalline Solids”, Acta Metallurgica, Vol. 31, pp. 1951-1976.

6. Tomita, Y., Adachi, T. and Tanaka, S. (1997): “Modeling and Application of Constitutive
Equation for Glassy Polymer Based of Nonaffine Network Theory”, European Journal of
Mechanics - A/Solids, Vol. 16, pp. 745-755.

7. Hutchinson, J. W. (1976): “Bounds and Self-Consistent Estimates for Creep of Polycrys-
talline Materials”, Proceedings of the Royal Society of London A, Vol. 348, pp. 101-127

8. Uchida, M. and Tomita, Y. (2002): “Deformation of Crystalline Polymers Containing Amor-
phous Phase”, Proceedings of CMD2002, pp. 111-112

9. Argon, A. S. (1973): “A Theory for the Low-Temperature Plastic Deformation of Glassy
Polymers”, Philosophical Magazine, Vol. 28, pp. 839-865.

10. Boyce, M. C., Parks, D. M. and Argon, A. S. (1988): “Large Inelastic Deformation of Glassy
Polymers, Part I: Rate Dependent Constitutive Model”, Mechanics of Materials, Vol. 7, pp.
15-33.

11. Arruda, E. M. and Boyce, M. C. (1993): “A Three-Dimensional Constitutive Model for the
Large Stretch Behavior of Rubber Elastic Materials”, Journal of the Mechanics and Physics
of Solids, Vol. 41, pp. 389-412.

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science
26-29 July, 2004, Madeira, Portugal





