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Bending Design of RC Circular CrossSections according to
ENV 1992 Standard for Strains ¢, > 1.35 %o

M. Skrinar!

Summary

The paper discusses bending analysis of a reinforcement concrete drcular cross
sedion implementing the bilinear design stressstrain relationship for the wncrete &
given by ENV 1992 standard. It covers the aase when the maximal strain in concrete €,
that appeas at the more strongly compressed edge of the compresgve zone excedals the
value of 1.35 %o and the stresses are partially described by alinea function and partialy
by a constant value. For this case the paper presents the development of the analytical
expressons for coefficients a, and k,. The procedure for determination of required cross
sedion Ag, based on equations resulting from equilibrium conditions, is also briefly
described.

Introduction

The analysis procedures for circular cross ®dions deviate esentidly from the
analysis of other types of cross ®dions due to a nonlinea change in the width of the
cross &dion.

The paper implements the bilinea design stressstrain relationship for the mncrete as
given by the ENV 1992 standard [1] (or shortly EC2). Two posshilities result from the
value of the maximal strain in concrete €, that appears in the more strongly compressed
edge of the compresdve zone. The first case, in which the asolute maximal strain in the
concrete is snaller or equal to 1.35 %o, and the stresss in the concrete have only alinear
distribution, is aready covered in references [2]. If the compressve stresses in the top
compressed edge exceed the value of 1.35 %o, the stressstrain relation is linea for the
strains below 1.35 %o, and stresses have a constant value for strains over 1.35 %o. For this
case, the paper presents the development of the analytica expressions for coefficients a,
(the average value of concrete stresses oy, in the bending compresgon zone, related to the
design value of concrete strength foq) and k, (the related distance of the cncrete
compresson force from the stronger compressed edge of the mmpressive aoss &dion).
These analytical expressons are necessary for the computation of the required cross
sedion of the reinforcements Ay and A, (if the cmpresgon reinforcement is required).
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Symbols and notations

The notations considering the dimensions of a drcular cross sedions used in the
paper arein acordance with in the EC2 and are presented in Figure 1:
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overal depth of crosssedion,

variable width of crosssedion,

neutral axis depth,

effedive depth of crosssedion,

d h=2R Aq areaof the reinforcement,

A’ areaof the ancrete under compresson.
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Figure 1. A circular cross &ction.

Basic assumptionsfor flexural analysis process

EC2 dlows the utilization of three different stressstrain design dagrams for
concrete: simple truncated redangle, bilinear diagram and the parabda-recangular
diagram. Although these diagrams differ in the mathematica description of stresses, the
maximal compressive strain in concrete for bending analysis in al three caesis limited
to the vaue 3.5 %o. In the bilinear diagram, that is used trough this paper, the margin
between the linea stressdistribution and the constant value of stresslies at the strain 135
%o in compresson, regardless of the ammpressve strength of the mncrete. The linear
distribution of stresses in the @ncrete is expressed as a function of the strain g, (just for
the conveniencethe absolute value of the strain value €., directly in %o, is used), as:

sC

O, = 1.35[11“, €. <1.35%0 (1)

Further, the stresses in the wncrete for strains higher than 135 %0 are equal to f,
which represents the design compressve strength of concrete.

The uniaxial bending analysis of circular cross ®ctionsis based on the assumption of
Bernoulli's-hypothesis (all adjacent plane adoss ®dions remain plane during loading).
This assumption assures linea distribution of strains over the aoss gction. All strainsin
the cross ®dion, that are governed by the strains €, and &g, i.e. strain in the more
strongly compressed edge of the compressive zone and the strain in reinforcement in the
tensile ne, respedively, can be found by linea interpolation between the margin values
€. and 4. As a @mnsequence of strains, stresses develop in the deformed region. In the
concrete below the neutral axis, which is considered to be aacked, streses cannot

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science
26-29 July, 2004, Madeira, Portugal



Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press 1671

develop and so this area does not contribute to the fulfillment of static equili brium.
Therefore the aadked concreteis replaced by the sted reinforcement.

Derivation of coefficients Qv and ky, for circular cross gdions

For the cae under investigation, i.e. €,21.35 %o, the stresses in the concrete ae
described partly by linear distribution and pertly by a constant value. The margin between
the two mathematicd descriptions lies at €.=1.35 %0 and the distance from top fibre and
the fibre with strain 1.35 %o is denoted with y,,,. The strains are expressed as a function of
the distance from the neutral axisy andthe strain value €:

G-y
e ly)=0-7 e, @

The "stressbody" of the cmpresses zone or the resultant of stresses in concrete is
thus obtained implementing Egs. (1) and (2) by an integral as:

b( )
F. = [o A= o, [dzldy = (f, my+ [ O, Eb(y)@jy 3
Jo-ma- | { Jramber |

Y=Ym

The fullnessfador is further obtained by dividing the obtained result with the aoss
sedion areaof concrete in compresson AcC and concrete strength foq. The final result is:

a, =—" 4)

with (coefficientsaand pare just abbreviations):
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Similarly, the bending moment of stresses over the more strongly compressed edge of
the compressve zoneis obtained by the integral:

Ym X
[foo ¥ (y)ly+ [o, 0y bly)ey 7)
y=0

Y=Ym

and coefficient k; is finaly obtained by dividing the obtained result by the resultant
of compresgve stresses in concrete, which resultsin:

Ky =—n ()
ay

with:
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ay =402, X [qpl +a, [(al Cx p, Opg + pz)) (10)

Procedurefor the Determination of Required Reinforcement Ag

Two equili brium conditions must be satisfied when the aoss ®dion is subjeded to
the design value of bending moment Mgy, The equilibrium of axial forces can be written
as.

F-F=a, 00 ,A‘-A by =0 (11)

Also the euilibrium of bending moments must be preserved for an arbitrary paint.
The most frequently used points are the cantre of reinforcements and the centre of the

forceF.:
M,=0 (12
FZ-Mg=A S, @ Z-Mg=ASl0, @@ [L@-Mg=0 (13
M.=0 (14
RZ-Mg=A b Z-Mg,=A b, {@-Mg, =0 (15

where z is lever arm of internal forces and C isthe related dstance of the lever arm of
internal forces (dimensionless. It is expressed as the ratio of the lever arm of internal
forces z over effective depth of crosssedion d. The equations (13) and (15) actually
represent identica equation, just written in two different forms. The problem thus reduces
to the determination of several unknowns that must satisfy two equilibrium equations. If
the dimensions of the aoss ction are given (which is the most frequent case) and the
position of the reinforcement d is selected (d<h and acwrding to the minimum concrete
cover and other requirements), the only unknowns left are €4, €., and Aq..

To solve the problem while only two equations are available one of the three left
unknowns is chosen within allowed limits. As the reinforcement cross ®dion Ay is
diredly related to stresses in the sted o, that further depend on the value of strainsin the
sted &4, this unknown cannot be selected and must be determined as the last one. In the
engineaing analysis the value of strains in concrete €, is usually seleded for economic
reasons and the strains in sted g are dterwards computed in an iterative procedure from

equilibrium conditions. Starting with the initial value of &g, the position of the neutral
axis x can be computed as:

x=—t2 g (16)
EqtEp
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According to the paosition of the neutral axis coefficients a, and k, are evaluated
implementing expresson (4) and (8), respedively. Forcein the concrete is now:

I:c:avﬁk[ﬂcdus‘cc (17)

Further, the lever arm of internal forces z is computed as:

z:zm:(l—ka[&)mzé—kagsc—z (18)

€qate€p

If the euili brium of bending moments (Eq. (13) with 0=0.80) is nat satisfied, new
value of & is Eleded and the procedure is repeated. However, ff the eguilibrium of axial
forces is satisfied, the required cross ®dion of reinforcement Ag is finally computed by
dividing the force in concrete F, by oy, where the actual stressin reinforcement oy is
computed depending on the value of strainsin sted €.

Conclusions

The uniaxial bending analysis of circular cross ®dions was considered using
Bernoulli's-hypothesis and the standard EC2. The bilinea stressstrain diagram for
concrete was adopted and the cae where the strains at the more mmpressed edge of the
compressve zone exceeaded the value of 1.35 %o was considered. For this case the
development of analytical expressons for the wefficients a, and k, was presented. The
derived coefficients a, and k,, implemented with the iterative procedure described, allow
the reliable analysis of the drcular cross ®dions as all the parameters required are
acarately determined from equilibrium equations.

All presented expressons are given in analytical form and therefore they represent a
very suitable form for computer programs because it is posshble to use the described
iterative scheme to determine the required reinforcement cross €dion Ag;.
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