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Summary 

The paper discusses bending analysis of a reinforcement concrete circular cross 
section implementing the bilinear design stress-strain relationship for the concrete as 
given by ENV 1992 standard. It covers the case when the maximal strain in concrete εc2 
that appears at the more strongly compressed edge of the compressive zone exceeds the 
value of 1.35 ‰ and the stresses are partially described by a linear function and partially 
by a constant value. For this case the paper presents the development of the analytical 
expressions for coeff icients αv and ka. The procedure for determination of required cross 
section As1, based on equations resulting from equilibrium conditions, is also briefly 
described.  

Introduction 

The analysis procedures for circular cross sections deviate essentially from the 
analysis of other types of cross sections due to a nonlinear change in the width of the 
cross section. 

The paper implements the bil inear design stress-strain relationship for the concrete as 
given by the ENV 1992 standard [1] (or shortly EC2). Two possibil ities result from the 
value of the maximal strain in concrete εc2 that appears in the more strongly compressed 
edge of the compressive zone. The first case, in which the absolute maximal strain in the 
concrete is smaller or equal to 1.35 ‰, and the stresses in the concrete have only a linear 
distribution, is already covered in references [2]. If the compressive stresses in the top 
compressed edge exceed the value of 1.35 ‰, the stress-strain relation is linear for the 
strains below 1.35 ‰, and stresses have a constant value for strains over 1.35 ‰. For this 
case, the paper presents the development of the analytical expressions for coeff icients αv 
(the average value of concrete stresses σm in the bending compression zone, related to the 
design value of concrete strength fcd) and ka (the related distance of the concrete 
compression force from the stronger compressed edge of the compressive cross section). 
These analytical expressions are necessary for the computation of the required cross 
section of the reinforcements As1 and As2 (if the compression reinforcement is required).  
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Symbols and notations  

The notations considering the dimensions of a circular cross sections used in the 
paper are in accordance with in the EC2 and are presented in Figure 1: 

h=2×R

b 

As1 

x 

d

Ac
c
 

h  overall depth of cross-section, 
b  variable width of cross-section, 
x  neutral axis depth, 
d effective depth of cross-section, 
As1  area of the reinforcement, 
Ac

c  area of the concrete under compression. 
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Figure 1. A circular cross section. 

Basic assumptions for flexural analysis process 

EC2 allows the utili zation of three different stress-strain design diagrams for 
concrete: simple truncated rectangle, bilinear diagram and the parabola-rectangular 
diagram. Although these diagrams differ in the mathematical description of stresses, the 
maximal compressive strain in concrete for bending analysis in all three cases is limited 
to the value 3.5 ‰. In the bilinear diagram, that is used trough this paper, the margin 
between the linear stress distribution and the constant value of stress lies at the strain 1.35 
‰ in compression, regardless of the compressive strength of the concrete. The linear 
distribution of stresses in the concrete is expressed as a function of the strain εc (just for 
the convenience the absolute value of the strain value εc, directly in  ‰, is used), as: 

 ‰ 1.35f
35.1 ccd
c

c ≤ε⋅
ε

=σ  (1) 

 

Further, the stresses in the concrete for strains higher than 1.35 ‰ are equal to fcd, 
which represents the design compressive strength of concrete. 

The uniaxial bending analysis of circular cross sections is based on the assumption of 
Bernoulli 's-hypothesis (all adjacent plane cross sections remain plane during loading). 
This assumption assures linear distribution of strains over the cross section. All strains in 
the cross section, that are governed by the strains εc2 and εs1, i.e. strain in the more 
strongly compressed edge of the compressive zone and the strain in reinforcement in the 
tensile zone, respectively, can be found by linear interpolation between the margin values 
εc2 and εs1. As a consequence of strains, stresses develop in the deformed region. In the 
concrete below the neutral axis, which is considered to be cracked, stresses cannot 
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develop and so this area does not contribute to the fulfil lment of static equili brium. 
Therefore the cracked concrete is replaced by the steel reinforcement. 

Derivation of coeff icients ααV and kA for circular cross sections  

For the case under investigation, i.e. εc2≥1.35 ‰, the stresses in the concrete are 
described partly by linear distribution and partly by a constant value. The margin between 
the two mathematical descriptions lies at εc=1.35 ‰ and the distance from top fibre and 
the fibre with strain 1.35 ‰ is denoted with ym. The strains are expressed as a function of 
the distance from the neutral axis y and the strain value εc2: 

( ) 2cc x
y

1y ε⋅




 −=ε                           (2) 

The "stress body" of the compresses zone or the resultant of stresses in concrete is 
thus obtained implementing Eqs. (1) and (2) by an integral as: 

( )

( )

( ) ( )∫∫∫ ∫∫
=== −=

⋅⋅σ+⋅⋅=⋅⋅σ=⋅σ=
x

yy

c

y

0y

cd

x

0y

2

yb

2

yb
z

c

A

cc

m

m

c
c

dyybdyybfdydzdAF                  (3) 

The fullness factor is further obtained by dividing the obtained result with the cross 

section area of concrete in compression 
c

cA  and concrete strength fcd. The final result is: 

d

n
v α

α=α                     (4) 

with (coeff icients a and p are just abbreviations): 
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( )( )2321313d p  pxa  R40xaa pxa +⋅⋅+⋅⋅⋅⋅+⋅⋅=α                      (6) 

Similarly, the bending moment of stresses over the more strongly compressed edge of 
the compressive zone is obtained by the integral: 
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and coeff icient ka is finally obtained by dividing the obtained result by the resultant 
of compressive stresses in concrete, which results in: 
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α
α=                   (8) 

with: 
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( )( )2841312cd p + ppxaa + px40 ⋅⋅⋅⋅⋅⋅ε⋅=α                  (10) 

Procedure for the Determination of Required Reinforcement AS1  

Two equili brium conditions must be satisfied when the cross section is subjected to 
the design value of bending moment MSd. The equil ibrium of axial forces can be written 
as: 

0AAfFF 1s1s
c

ccdv1sc =σ⋅−⋅⋅α⋅α=−            (11) 

Also the equilibrium of bending moments must be preserved for an arbitrary point. 
The most frequently used points are the centre of reinforcements and the centre of the 
force Fc:  

0M s =Σ                (12) 

0MdfAMzfAMzF Sdcdv
c

cSdcdv
c

cSdc =−⋅ζ⋅⋅α⋅α⋅=−⋅⋅α⋅α⋅=−⋅        (13) 

0M c =Σ                (14) 

0MdAMzAMzF Sd1s1sSd1s1sSds =−⋅ζ⋅σ⋅=−⋅σ⋅=−⋅          (15) 

where z is lever arm of internal forces and ζ is the related distance of the lever arm of 
internal forces (dimensionless). It is expressed as the ratio of the lever arm of internal 
forces z over effective depth of cross-section d. The equations (13) and (15) actually 
represent identical equation, just written in two different forms. The problem thus reduces 
to the determination of several unknowns that must satisfy two equilibrium equations. If 
the dimensions of the cross section are given (which is the most frequent case) and the 
position of the reinforcement d is selected (d<h and according to the minimum concrete 
cover and other requirements), the only unknowns left are  εs1, εc2, and As1. 

To solve the problem while only two equations are available one of the three left 
unknowns is chosen within allowed limits. As the reinforcement cross section As1 is 
directly related to stresses in the steel σ1 that further depend on the value of strains in the 
steel εs1, this unknown cannot be selected and must be determined as the last one. In the 
engineering analysis the value of strains in concrete εc2 is usually selected for economic 
reasons and the strains in steel εs1 are afterwards computed in an iterative procedure from 
equilibrium conditions. Starting with the initial value of εs1, the position of the neutral 
axis x can be computed as: 

dx
2c1s

2c ⋅
ε+ε

ε
=               (16) 
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According to the position of the neutral axis coeff icients αv and ka are evaluated 
implementing expression (4) and (8), respectively. Force in the concrete is now: 

c
ccdvc AfF ⋅⋅α⋅α=                             (17) 

 Further, the lever arm of internal forces z is computed as: 

( ) dk1dk1dz
2c1s

2c
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
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ε
⋅−=⋅ξ⋅−=⋅ζ=              (18)  

If the equili brium of bending moments (Eq. (13) with α=0.80) is not satisfied, new 
value of εs1 is selected and the procedure is repeated. However, ff the equilibrium of axial 
forces is satisfied, the required cross section of reinforcement As1 is finally computed by 
dividing the force in concrete Fc by σs1, where the actual stress in reinforcement σs1 is 
computed depending on the value of strains in steel εs1. 

Conclusions 

The uniaxial bending analysis of circular cross sections was considered using 
Bernoulli 's-hypothesis and the standard EC2. The bil inear stress-strain diagram for 
concrete was adopted and the case where the strains at the more compressed edge of the 
compressive zone exceeded the value of 1.35 ‰ was considered. For this case the 
development of analytical expressions for the coeff icients αv and ka was presented. The 
derived coeff icients αv and ka, implemented with the iterative procedure described, allow 
the reliable analysis of the circular cross sections as all the parameters required are 
accurately determined from equil ibrium equations.  

All presented expressions are given in analytical form and therefore they represent a 
very suitable form for computer programs because it is possible to use the described 
iterative scheme to determine the required reinforcement cross section As1.  
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