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Summary 

 
      The fourth order differential equation governing the static displacement of a 
beam embedded in an elastic medium is developed from first principles.  
Allowance is made for the effects of shear deformation and the distributed lateral 
and rotational stiffness of the supporting medium.  Each effect is defined by a 
unique, non-dimensional parameter whose value can be set to zero if the 
particular effect is not to be considered.  This enables any combination of effects 
to be accounted for.  The governing differential equation is then solved and the 
solution stated in the form of an exact static stiffness matrix. The resulting 
equations find considerable application when considering problems involving 
soil-structure interaction. 
 

Introduction 
 
      The allowance for shear deformation is becoming progressively more 
important as structural elements are more regularly fabricated from composite 
materials that are very strong in their primary load carrying directions, but are 
often weak in shear [1, 2].  This relative weakness manifests itself in a low shear 
modulus to Young’s modulus ratio, which is typically three to four times less 
than the equivalent metallic member and can be as much as ten times less [3].  In 
addition, there is now a more regular need to analyse structures whose supports 
can ‘give’ under applied load in a more rigorous way than has been customary 
hitherto.  Such structures may range from railway sleepers to strip foundations, to 
buried pipelines and in a more complex environment, the coupled movement of 
piles and pile groups. 
 
      The present paper formulates from first principles the differential equation 
that governs the lateral displacement of a beam member that is embedded in an 
elastic medium.  It allows for the coupled effects of shear deformation and the 
distributed lateral and rotational support stiffnesses provided by the medium.  
The theory is developed in terms of non-dimensional parameters that uniquely 
describe the effect of shear, distributed lateral support stiffness and distributed 
rotational support stiffness, in such a way that any effect can be included by 
assigning the corresponding parameter its correct value, or ignored if the relevant 
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parameter is set to zero.  The solution of the governing differential equation leads 
to an exact stiffness matrix formulation that can be used in the normal way within 
the structure of the finite element technique. 
 

                                (a)                                                               (b) 
 
Figure 1.  (a)  Positive directions of the nodal forces and displacements in 
member co-ordinates;   (b)  Positive directions of the forces and displacements 
acting on an elemental length of the member in local co-ordinates. 
 

Theory 
 
      Figure 1(b) shows the forces and displacements associated with a typical 
elemental length, dx, of a beam of length L that is subject to lateral and rotational 
distributed support stiffnesses.  Resolving vertically and taking moments about A 
gives, respectively, 
 
      Ψθkdx/dMQVkdx/dQ y +== and                                                (1, 2) 
 
while the bending moment, bending slope and shear slope are given by [4] 
 
      φΓΓΨΨ /Qdx/dV,dx/dEIM =−=−= and                    (3, 4, 5) 
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where =′′= k,AGkφ section shape factor [5], A = cross-sectional area, G = 
modulus of rigidity, E = Young’s modulus, I = second moment of area of the 
member cross-section and Q, M, V, Ψ and Γ are the shear force, bending moment, 
lateral displacement, bending slope and shear slope, respectively, at a typical 
distance x from the left hand end of the member.  θkk y and  are the lateral and 
rotational stiffnesses/unit length of the encapsulating medium. 
 
      Eliminating either ΓΨ or,V  from Eqs. (1) – (5) and introducing the non-
dimensional parameter ,L/x=ξ the required differential equation that governs 
the displacement of the beam may be written as  
 
      [ ])1()( 2224

θθ KsKDKKsD yy +++− ∆ = 0                                             (6) 
 

where ,L,L/x,
d
dD lengthmember === ξ
ξ

 ∆ = V, Ψ or Γ, the shear 

parameter   EI/LkKEI/LkK,L/EIs yy
2422 and θθφ ===                    (7) 

 
      This non-dimensional formulation is particularly convenient, since the effects 
of shear deformation, lateral distributed support stiffness and rotational 
distributed support stiffness, defined uniquely by the parameters θKK,s y and2 , 
respectively, are included when the relevant parameter takes its natural value and 
omitted when the relevant parameter is set to zero. 
 
      If now we assume that ∆ = V we may write the general solution for Eq. (6) as  
 
      βξβξαξαξ sinhCcoshCsinhCcoshCV 4321 +++=                               (8) 
 
where 
 
      [ ] [ ] ,cbb,cbb ½½2½½2 )()( −−=−+= βα  
 
      )1(and2 22

θθ KsKcKKsb yy +=+=                                                 (9) 
 
      The form of Eq. (8) presumes that βα and  are always real, although 
inspection of Eq. (9) shows that they can also be imaginary or complex, 
depending on the values of b and c.  Thus when programming the stiffness matrix 
of Eq. (21) it will be necessary either to work in complex arithmetic or to use 
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alternative equations to Eq. (8) when appropriate [6] if it is necessary always to 
work in real arithmetic. 
 
      Equations defining Ψ, Q and M can be determined in non-dimensional form 
from Eqs. (1) – (5) together with Eqs. (7) as 
 
      Ψ ( ) ( )[ ]DVKsDsLKs y

2222 11 −+=+ θ                                                       (10) 
 
      ( ) [ ]DVKKsDEILKsQ y θθ −−−=+ 22321                                              (11) 
 
      [ ]VKsDEIML y

222 −−=                                                                            (12) 
 
      Substituting for V from Eq. (8), suitably differentiated, gives 
 
      Ψ [ ]βξββξβαξααξαγψ coshsinhcoshsinh 14131211 CCCC +++=           (13) 
 
      [ ]βξββξβαξααξαγ coshCsinhCcoshCsinhCQ q 24232221 +++−=   (14) 

 
     ][ 34333231 βξββξβαξααξαγ sinhCcoshCsinhCcoshCM m +++−=  (15) 
 
where 
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and 
 
      2322 )1()1(1 /L,LKs/L,Ks/ mq ΕΙγΕΙγγ θθψ =+=+=                (16) 
 
      The nodal forces and displacements can now be defined in the member 
co-ordinate system of Figure 1(a), as follows: 
 
at node 1, the left hand end of the member, 
 
      MMQQVV =−==== 1111 ,,,:0 ΨΨξ  
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at node 2, the right hand end of the member, 
 
      MMQQVV −===== 2222 ,,,:1 ΨΨξ                                (17) 
 
      Thus the nodal displacements and forces can be determined from Eqs. 
(8), (13), (14) and (15) and can be written in matrix form as: 
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   (18) 

 
or 
 
      d = S C                                                                                            (18a) 
 
and 
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                                                                                                                 (19) 
 
or 
 
      p = S* C                                                                                          (19a) 
 
Hence from (18a) 
 
      C = S-1 d                                                                                            (20) 
 
Substituting Eq. (20) into Eq. (19a) yields the required stiffness 
relationship as 
 
      p = k d                                                                                               (21) 
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where 
 
       k = S* S-1                                                                                          (22) 
 

Conclusions 
 
      The Summary can be read as a statement of the conclusions. 
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