
Optimization of FFT Computation for Processors of the Pentium 4
Type

Luis Figueiredo1, Mário Freire2

Summary

The Fourier Transform, or more properly the Discrete Fourier Transform (DFT), has
an extremely vast application in the areas of civil, electrical and mechanical engineering,
and computer science.

One of the problems of its practical use is the high computational effort that it
imposes for its computation. With the algorithm of Fast Fourier Transform (FFT) it was
possible to diminish substantially this effort of computation, especially for series with
large number of signals.

The computational power of the modern computers allows, inevitably, enhancement
of the speed of the computation of this transform, increasing, more and more, the
possibility of its application in real time systems using generic low-cost equipment.
However, it is still possible to increase its performance significantly if we use all the
potential of the Pentium 4 processor, potential not always efficiently used by the
traditional compilers of high level programming languages.

Introduction

The exponential increase of the computational capacity, associated with increasing
developments of the optimization capacities for high level languages compilers, has made
programmers neglect the knowledge related to the basic principles of computer
architecture. These facts take into address the situations where the programmers lose the
notion of what they are losing in performance for its applications, due to the inefficient
utilization of all the capacities of modern computers.

The aim of this paper is to present a comparative study of the performances obtained
in the computation of the FFT for one and two dimensional signals, being used the most
recent compiler of C++ from Microsoft (Visual Studio.NET 2003) and using the Single
Instruction Multiple Data (SIMD) technology, with low level programming [1][2].

In the next section, a brief overview of the DFT and FFT is presented. Next, the
techniques and results for the parallelization of the FFT using the Pentium 4 SIMD
technology will be presented. These results will be compared with those achieved
employing a classic implementation in a high-level language compiled with the related
compiler. Finally, main conclusions will be presented.

1 ESTG, Instituto Politécnico da Guarda, Portugal
2 Departamento de Informática, Universidade da Beira Interior, Portugal

1693
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

FFT-Fast Fourier Transform

The DFT allows the transformation of signals in time domain to frequency domain,
making possible its analysis and manipulation into this new domain. For one-dimensional
signals the DFT is defined for the equation (1).

M
uxjM

x
exf

M
uF

Π
−−

=
∑=

21

0
)(1)(

 (1)

For two-dimensional signals the DFT takes the form of the equation (2).









=
+Π−−

=

−

=
∑ ∑

y
N
v

x
M
u

jM

x

N

y
eyxf

MN
vuF

21

0

1

0
),(1),(

 (2)

Taking into account the exponential function properties, it is possible to perform the
DFT computation for two-dimensional signals, applying, in a consecutive form, the
equation (1) to all the lines of the matrix f(x, y), followed by a new application of the
same equation to the columns of the results derived in the first step.

The well-known algorithm of the FFT, presented by J. W. Cooley and J.W. Tuckey in
1965, allows an increase in the speed of DFT computation, especially for large
dimensions signals. Basically this algorithm divides the original signal in two, one with
the even elements, and the other with the odd elements of the original signal. After the
DFT computation of each one, its values are combined to get the DFT of the original
signal. This process consists, for the first half of the signal to process, of adding to each
even element the corresponding odd element multiplied by a sinusoid. For the second half
of the signal each element pair is deducted with the corresponding odd element also
multiplied for the same sinusoid. If the number of elements M of the signal will be a
power of 2, is possible to perform successive divisions of each signal until its size reaches
one. In this phase the DFT computation is absolutely trivial, as M=1, F(0)=f(0). The
mathematical foundation for this known algorithm can be found in diverse literature [3].

Practical Results

All tests were carried out on a personal computer equipped with a 2.55-GHz Pentium
4 processor, with 512KBytes of second level cache, and 8KBytes of first level cache for
data. The size of system RAM memory was 512MBytes. The operating system used was
Microsoft Windows XP.

The performance metric considered here was the number of CPU clock cycles. For
each test, five measurements had been done. The median of those results is then used for
the final value of each test. So that the effect of the cache memory would be, as much as
possible, equal for different measurements, it was decided to fill each one of the signals
elements before each test.

1694
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

The practical results obtained have for a basis of comparison the times achieved with
a public domain algorithm implemented in C [4] using the compiler Visual Studio.NET
2003. The function that implements this algorithm has two vectors of floats as
parameters, respectively with the real and the imaginary part of the signal, and a whole
number with the number of elements. All the necessary computations are made internally
in the function. This implementation reduces to a minimum the effort of computation of
the necessary sinusoids to perform the FFT, since, after each sinusoid is calculated, all
subsequent computations, where its use is necessary, are made.

For better optimization of the existing resources in the processors of the type Pentium
4, nominated in respect to the organization of the data to facilitate its vector processing
capacities, the choice was made to use a single vector of floats contain the real and
imaginary parts of each element. The data obtained for one-dimensional signals, with
sizes that vary between 16 and 1024, show that it is possible to increase the speed of FFT
computation in relation to the implementation in C for a factor larger then 2, as may be
observed in Graph 1.

These results are much more significant since it is recognized that in the case of FFT
implementation using SIMD technology a set of repetitive mathematical operations are
made in non-continuous data in memory, which it is not, at all, the ideal situation for the
utilization of this technology.

0

1

2

3

16 32 64 128 256 512 1024
Number of signal elements

Graph 1: Speed of FFT using SIMD in relation to the FFT in C for one-dimensional signals

Relative to the implementation of the FFT for two-dimensional signals, the simplest
form of making it consists of the execution of the following steps:

• FFT computation for each one lines of the signal (FFT H).
• Transpose the obtained matrix (Transp. 1).
• FFT computation for each one lines of the new obtained matrix (FFT V).
• Transpose the obtained matrix (Transp. 2).

1695
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

In the vast majority of practical situations, when the FFT of two-dimensional signals
is calculated, each element is multiplied by ()()yx +− 1 , where x and y are the coordinates
of the element to multiply. The objective of this operation is to center the spectrum
obtained, facilitating its posterior processing. Taking this fact into account, the time-lapse
for this operation was also introduced in the measurement time of the FFT.

The first results gotten for the computation of the FFT in two-dimensional signals
meet express in Graph 2.

0

1

2

3

4

5

16
*16

32
*16

32
*32

64
*32

64
*64

12
8*

64

12
8*

12
8

25
6*

12
8

25
6*

25
6

51
2*

25
6

51
2*

51
2

10
24

* 5
12

10
24

* 1
02

4

Matrix size of signals

Graph 2: Speed of FFT using SIMD in relation to the FFT in C for two-dimensional signals

with size from 16*16 to 1024*1024

With the exception of the matrices of size 512*256 where the execution times are
similar, in all the other sizes the execution times are between about 2 and 4 times faster.
For this particular size one witnesses a time degradation due to the utilization of one
matrix with size equal to 512*256*4*2=1Mbytes, while in the traditional implementation
in C, two matrices with size equal to 512*256*4=512Kbytes are used. While each one of
these matrices fits in the level two cache, which improves its transpose, the process to
transpose the matrix of 1Mbyte takes more time, with direct influence in the global FFT
time.

To better understand the ratio of the involved tasks times in the FFT computation of
two-dimensional signals, their measurement were taken for the different sizes of
matrices. Beyond the related steps, the time to order the operative system for the
necessary memory (Malloc) is included. The results are expressed in Graph 3.

With these results as a starting point, a set of alterations were made with the aim of
diminishing the FFT computation time. The first step, namely (SIMD Trans.), consisted
of changing the transpose algorithm to optimize the effect of cache memory. The results,
presented in Graph 4, show a special improvement for the matrices of sizes greater than
the level-two cache. The following step, (SIMD Colu.), was undertaken due to the

1696
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

necessity of re-arranging the elements of the original signal, rearranging this equivalent
to the successive divisions of the signal to odd and even elements. Thus, instead of
calculating the matrix transpose, and after rearranging the elements, the elements of each
one of its columns are directly re-arranged for a one-dimensional vector and the FFT for
this vector is performed. Next, the results are introduced into the respective column of the
original matrix. The results showed an increase of the performance, when the original
matrix fit in the level-two cache, and a reduction for the other situations.

0%

10%

20%

30%

40%

50%

16
*16

32
*16

32
*32

64
*32

64
*64

12
8*6

4

12
8*

128

25
6*

128

25
6*

256

51
2*

256

51
2*

512

10
24

* 5
12

10
24

* 1
02

4

Malloc
(-1)^(x+y)
FFT H
Transp. 1
FFT V
Transp. 2

Graph 3: Percentage time of the different phases of the FFT

0.0

2.0

4.0

6.0

8.0

10.0

12.0

16
*16

32
*16

32
*32

64
*32

64
*64

12
8*

64

12
8*

12
8

25
6*

12
8

25
6*

25
6

51
2*

25
6

51
2*

51
2

10
24

* 5
12

10
24

* 1
02

4

C/SIMD
C/SIMD Trans.
C/SIMD Colu.
C/SIMD Pre

Graph 4: Final results for the different solutions

1697
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

The last step, namely (SIMD Pre), consisted of using to best advantage the two
previous steps in relation to the size of the matrix and the memory cache, and effecting
the pre-computation of all necessary sinusoids to perform the FFT. In this way, the time
required to effect unnecessary real time computations is diminished and, above all, it
allows the organization of a new more efficient algorithm in terms of cache memory.
This is a substantive issue. In fact, the efficient use of memory cache, associated with the
correct organization of the data, is fundamental when the aim is to optimize the software
using the Pentium 4 vector processing capacities. The results obtained are absolutely
clear.

It is important to underscore the fact that these last results are compared in the same
fashion as the tree previous ones. This permits a better appreciation of the significant
increase derived performance, remembering of course that the C implementation doesn’t
use the pre-computation of the necessary sinusoids.

Conclusions

With a combination of algorithms, and good data organization, that take best
advantage of the capacities of the Pentium 4, it is possible to significantly increase the
speed of the FFT computation.

The processing capacities that allow this performance improvement are not used
efficiently by the compiler in the tests undertaken, which means that the programmer
cannot leave for the compiler all the work of code optimization. Otherwise, the potential
of the computer may not be fully realized.

The knowledge of basic concepts of Computers Architecture is fundamental, so that
the programmers can structure the data and better organize its algorithms to extract
advantages, in terms of speed, whenever the time factor becomes crucial. Even without
programming in low-level language, it is perfectly possible, and desirable, to use this
knowledge in the optimization of applications.

In practical situations, such as the various fields of engineering that demand
processing in real time, it could be advantageous to invest a little more time in code
optimization. This study showed that the advantages of this extra care can be significant.

References

1 Intel: IA-32 Intel Architecture Software Developer’s Manual, Intel Corporation,
Volume 1, Cap. 9.

2 Intel: IA-32 Intel Architecture Software Developer’s Manual, Intel Corporation,
Volume 1, Cap. 11.

3 Gonzalez, R. and Woods, R (2001): Digital Image Processing, Prentice Hall, Cap 4

4 FFT - Transformée de Fourier Rapide,

http://magphy.ujf-renoble.fr/orbis/files/cours/2002/maitrise/cours_signal/Cours4.pdf

1698
Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal

