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Summary 

One-dimensional model was proposed for static and dynamic nonlinear analysis of 
steel tubular bridge piers. The present model does not require the relationships between 
loads and displacements, which have been obtained by experimental works or shell 
analysis. The model dimensions such as thickness, height and radius, and material 
properties of tubular piers are required for static and dynamic analysis of the present 
model. The present analysis consists of two stages. The first stage is to obtain the stress 
and strain relationships in the base plates, where local bending buckling was observed. 
The second one is to analyze the overall behavior of tubular steel bridge piers. The 
validity of the present model was confirmed through comparisons between the existing 
experimental results and the present numerical results. 

Introduction 

Severe earthquake will, in most case, lead to inelastic behavior in conventional civil 
engineering structures. Great damages of steel bridge piers have been observed in the 
1995 Kobe Earthquake. Since the great earthquake, various experimental and analytical 
researches have been conducted to examine the ultimate strength and ductility of steel 
bridge piers. A shell analysis has been used to compare the numerical results with the 
experimental results. Since the shell analysis is expensive, some single degree of freedom 
models have been proposed. The crucial point for 1-D analysis is the constitutive 
equations used, which account for the local buckling of steel piers. The enveloped curves, 
obtained by experiments or shell analysis, have often been used to establish the 
constitutive equations. Therefore, when no experimental results are available, the shell 
analysis is indispensable for establishing the constitutive equations for 1-D analysis. 

In this paper, as a first step, the constitutive equations for 1-D analysis are established 
by analyzing the modified Shanley model. Not experiments nor shell analysis are needed 
for establishing the constitutive equations. The enveloped curves, which take into account 
the local buckling, are used only in the compression side of constitutive equations for 
piers. The tension side of constitutive equations is assumed to be tri-linear.  

The second step is to analyze the overall behavior of steel piers. The constitutive 
equations, obtained in the first step, are introduced into the base plates of steel piers. The 
height of base plates is determined by the equations proposed in this paper. The material 
and geometrical nonlinearities are taken into account in the base plates. The upper parts 
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of steel piers are modeled by an elastic beam, in which the geometrical nonlinearities are 
taken into account. 

The static and pseudo-dynamic experimental results are used to confirm the validity 
of the present model. 

One-Dimensional Model  

The present model for steel piers is shown in Fig.1. The cross-sections of steel bridge 
piers are circular. The model for piers consists of base plates with height 2L  and elastic 
beam with height 1L . The base plates are fixed at the bottom of piers, while the axial and 
lateral loads are applied at the top of piers.  

As a first step, the constitutive equations for the base plates are obtained. The model, 
as shown in Fig.2, is used to establish the constitutive equations. The height 2L  depends 
on the material and is determined by the following equations: 
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where vP  is the initial axial load, 0A cross-sectional area, yσ  yield stress, *t  

modified thickness defined in Ref.(1), I moment inertia with vertical stiffeners, 0I  

moment inertia without vertical stiffeners, D diameter of pier, L height of pier, and t 
thickness of tubular pier. In Fig.2 we assume that tl =1 . The four quadrates with tl ×1  
consist of fiber elements, whose constitutive equation is shown in Fig.3. This fiber has 
only axial stiffness. The number of fiber elements used is 100. The two beams with 
length 2l  are assumed to be in-elastic, the constitutive equation of which is shown in 
Fig.3. The material and geometrical nonlinear analysis is conducted to obtain the 
relationships between the axial load P and the deflection vδ . The relationships obtained 
are used as the constitutive equations of base plates. The ratio ξEE /  is assumed to be 

100.  

      The typical relationships between axial load and axial displacements are shown in Fig. 
4. Due to the buckling, the softening effects are observed in the relationships. The 
number of fiber elements is changed from 6 to 100 in order to check the convergence of 
maximum loads. The convergence of maximum load is attained when 20 elements are 
used. In this paper, 100 fiber elements are used for keeping a numerical precision. The 
curves obtained are used as the constitutive equation in the compression side of steel 
piers. The constitutive equation of the tension side is assumed to be tri-linear. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1
� � � � �

�
�

�
�

 (N
/m

m
2 )

� � 15�No.1(SS400)
� � 21�No.1(ST K400)
� � 23�RO-25(SM490)

Axial Displacement 

Axial Load

 

 

Fig.4  Relationships between vP  and vδ  
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The overall analysis of steel piers is conducted based on the model as shown in Fig.5. 
Figure 5(b) shows the deformed state of steel pier model. The axial load corresponds to 
the dead load of superstructures of bridge, and is assumed to be constant. The lateral load 
corresponds to the earthquake load. The base plate with height 2L  consists of fiber 
elements, the constitutive equation of which is shown in Fig.6. The elastic beam with 
height 1L  has axial and bending stiffness. The connection between elastic beam and base 
plate is assumed to be rigid; the Bernoulli-Euler hypothesis holds.  
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Fig.5 Overall Model 

Fig.6 Constitutive Equations for Overall Model 
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Numerical Results 

The static numerical results are shown in Figs.7 and 8, in which the experimental 
results by Ishizawa and Iura 1) are plotted by dotted linen while the numerical ones by 
solid lines. The model in Fig.7 is subjected to constant initial axial load and cyclic lateral 
load. The present numerical model detects the softening effects after peak load. A good 
agreement between experimental results and numerical ones are observed in Fig.7. The 
load history in Fig.8 was taken from The Kobe Earthquake in 1995, in which a strong 
earthquake came first. According to the experiment, a local buckling occurred at the base 
plate at first load cycle. The difference between experimental results and numerical ones 
are small. 
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Fig.8 Load-Displacement Curves 
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The pseudo-dynamic tests 
were conducted in Japan2). The 
earthquake wave used in the test 
was recorded by Japan 
Meteorological Agency in 1995. 
The comparisons between 
numerical results and 
experimental ones are shown in 
Fig.9. The model in Fig.9(a) is 
the same as that of Fig.9(b). The 
height of pier is 1945mm, 
diameter 400mm and thickness 
4.5mm. The model in Fig.9(a) 
was subjected to the actual  
recorded waves, while the model 
in Fig.9(b) was subjected to 1.5 
times of the recorded waves. 
Therefore, the remarkable 
residual displacement is observed 
in Fig.9(b). The model in Fig.9(c) 
has the same sizes as that of Figs. 
9(a) and 9(b), except the 
thickness of steel pier. The model 
of Fig. 9(c) has 6mm thickness. 
The actual recorded wave was 
used. In contrast with the model 
in Fig.9(a), the residual 
displacement was observed in 
Fig.9(c). A good agreement 
between pseudo-dynamic tests 
and numerical results are 
obtained. These comparisons 
confirm the capability and the 
validity of present numerical model. 
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