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Summary 

The main purpose of this work is to present the use of the boundary element method 
(BEM) for analyzing the convective flow in a tall porous enclosure heated from the side by 
utilizing the Brinkman-Forchheimer momentum equation (Forcheimer model) in order to 
investigate the effect of the Forchheimer inertia term on the global heat transfer through the 
cavity. Namely the effects that this term have upon the engineering parameters of interest for 
the case of a fluid saturated porous media, is known to be minimal but was not confirmed yet 
with the use of the BEM or any of its extension. The numerical solution of the problem 
(velocity, vorticity, temperature and rates of heat transfer) are obtained for different Rayleigh 
and Darcy numbers and results are compared with the Brinkman extended Darcy momentum 
equation (Brinkman model).  

Introduction 

Buoyancy induced convection in a fluid saturated porous media is of considerable 
interest, due to its numerous applications in energy-related engineering problems. Studies 
have been reported dealing with different geometries and variety of heating conditions. For 
example, a vertical cavity in which a horizontal temperature gradient is induced by side walls 
maintained at different temperatures has been analyzed by Lauriat & Prasad [1], Vasseur et 
al. [2] and Jecl et al. [3] using Brinkman-extended Darcy formulation. The significance of 
Forcheimer modification is given for the same type of the problem by Lauriat & Prasad [4] 
and for the natural convection in porous layer heated from below by Lage [5]. The numerical 
methods used for the solution of governing equations, these in most cases written in vorticity-
stream function formulation, are finite difference method (FDM) and finite element method 
(FEM) while in the present contribution the boundary domain integral method (BDIM) is 
used.  

Governing equations 

Consider a two dimensional vertical porous cavity heated from the left side at a constant 
temperature and isothermally cooled at the right side; the top and the bottom walls are 
adiabatic. In the porous media of nondeformable solid matrix, the saturating fluid is 
considered to be a Newtonian. The thermophysical properties of the fluid and the solid phases 
of the porous media are taken to be constant except for the density variation, which is handled 
according to the Boussinesq approximation. Furthermore, the solid particles and the fluid are 
assumed to be in local thermodynamic equilibrium, while the porosity and permeability of the 
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media are assumed to be uniform throughout the system. The general set of equations for 
conservation of mass, momentum, and energy based on the Brinkman-Forcheimer extended 
Darcy momentum equation are known as a Forcheimer model consist of continuity, 
momentum and energy equation 
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In equations (1), (2) and (3) iv  is volume-averaged velocity, ix  the i -th coordinate, φ  is 
porosity, fν  the fluid kinematic viscosity, eν  the effective kinematic viscosity, K  
permeability of porous media, ixP ∂∂  pressure gradient in the flow direction, ρ  the fluid 
density, ig  gravity. The normalized density-temperature variation function F  is taken as 

( ) ( )000 TTF T −−=−= βρρρ , with 0ρ  denoting the reference fluid mass density at 
temperature 0T  and Tβ  being the thermal volume expansion coefficient of the fluid. The 
permeability K  is independent of the nature of the fluid but it depends on the geometry of the 
media. The coefficient Fc  as a dimensionless form-drag constant varying with the nature of 
the porous media. Using the Ergun model, as described in Nield and Bejan [6], it is possible 
to calculate the coefficients as 232 )1(150 φφ −= dK  and ( ) 21315075.1 φ=Fc , where pd  
is the solid particle diameter. The effective viscosity eν  depends on the geometry of the 
porous media. It may have a different value than the fluid viscosity fν , therefore parameter 
Λ  denoting viscosity ratio, is introduced. Since Λ  depends on the geometry of the media, its 
value is approximated by φ1=Λ . Furthermore sρ  and ρ  are the solid and fluid densities 
respectively, sc  and fc  the solid and the fluid specific heats at constant pressure respectively, 
T  stands for temperature, and eλ  represents the effective thermal conductivity of the 
saturated porous media, ( ) sfe λφλφλ −+= 1 . 

The momentum equation (2), commonly known as Brinkman-Forcheimer equation 
consists of two viscous and two inertia terms. The first viscous term is the usual Darcy term 
(third on the r.h.s.), and the second is analogous to the Laplacian term that appears in the 
Navier-Stokes equations for pure fluid (fourth on the r.h.s.). The Laplace term is commonly 
called Brinkman term or Brinkman extension that expresses the viscous resistance or viscous 
drag force exerted by the solid phase on the flowing fluid at their contact surfaces. The first 
inertia term is the convective inertia term represented by the velocity times its divergent 
(second on the l.h.s.) and the second inertia term is so called Forcheimer inertia term (drag) 
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represented by the velocity times its absolute value (last term on the r.h.s.). In order to 
examine the effect of Forcheimer inertia term the present results are compared with our 
previously published results obtained with the Brinkman model [7]. 

Numerical Method 

The numerical method chosen for this investigation is the Boundary Domain Integral 
Method (BDIM) based on the classical Boundary Element Method (BEM), see Škerget et al. 
[8]. If the viscosity is partitioned into constant and variable parts so that fff ννν ~+=  the 
Brinkman extension in momentum equation is divided into two parts and the equation (2) is  
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Furthermore, the thermal diffusivity of the porous media pa , defined with fep ca ρλ=  is 
similarly as the kinematic viscosity, partitioned into constant and variable parts ppp aaa ~+= . 
Introducing the heat capacity ratio σ  with expression ( ) ( )( ) fssf ccc ρρφρφσ −+= 1 , the 
heat energy equation (3) can be rewritten in the following form 

 












∂
∂

∂
∂

+
∂∂

∂
=

∂
∂

+
∂
∂

j
p

jjj
p

j

j

x
Ta

xxx
Ta

x
Tv

t
T ~

2

σ  (6) 

 
The governing equations (1), (5) and (6) are further transformed with the use of the 

velocity-vorticity variables formulation. With the vorticity vector iω , representing the curl of 
the velocity field jkijki xve ∂∂=ω , the computational scheme is partitioned into its kinematic 
and kinetic part so that the continuity and momentum equations are replaced by the equations 
of kinematics and kinetics. The formulation has been presented in detail previously by Jecl et 
al. [3] and Škerget et al. [8], therefore only the resulting matrix form of the equations for 
kinematics, heat energy kinetics and vorticity kinetics are presented here as 
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Results and discussion 

The extended numerical algorithm, which includes the additional Forcheimer term, was 
tested on the problem of natural convection in a tall porous cavity heated from the side. The 
governing parameters for the present problem are: the porosity φ , the modified Rayleigh 
number pT aTKHgRa γβ ∆=* , the Darcy number ( )2)1( HKDa φ= , the aspect ratio 

DHA = , and the ratio of the volumetric heat capacity of the solid and fluid phase σ . Here 
D , H  and T∆  are the width of the cavity, the height of the cavity and the temperature 
difference between hot and cold walls, respectively. In order to illustrate the typical numerical 
results the parameters are 5=A , 1=σ , 1=∆T , 8.0=φ  and coefficient Fc  is equal to 0.2. 
A nonuniform computational mesh of 4030×  subdomains was used with the ratio between 
the longest and the shortest element equal to 30=xr  and 20=yr . Time step is 001.0=∆t , 

while the convergence criterion is determined to be 6105 −×=ε . It can be argued that the 
convective, Forcheimer and Brinkman terms are negligible for this case but the investigation 
that follows focus on the Forcheimer inertial effects only. A numerical model based on the 
presented theoretical work and chosen parameters is, at this moment, in the phase of 
evaluation and testing, therefore the simple test case is presented here for 100* =Ra . To 
demonstrate the effect of the additional Forcheimer term on the heat transfer across the 
cavity, the overall Nusselt number representing the total heat transfer across the cavity, 

( )∫ =∂∂−=
1

0
0 dyxTNu x , calculated by using the Brinkman model [7] is compared with the 

Nusselt number gotten by using the above described numerical procedure based on the 
Forcheimer model. Table 1. shows that the difference in the heat transfer rate is minimal. For 
example for 110−=Da  the difference is less than 1 % and for smaller Darcy numbers the 
difference is never greater than 4 %.  Higher distinction is expected with an increase in 
modified Rayleigh numbers. Table 1. further shows that Forcheimer model predicts lover 
total heat transfer across the cavity (Nusselt numbers) than the Brinkman model. These results 
are in agreement with the conclusions reported by Lauriat & Prasad [4] for vertical porous 
cavity and also with the conclusions reported by Lage [5] for horizontal porous layer. 
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Table 1.: Overall Nusselt number for 5=A , 100* =Ra  for Forcheimer and Brinkman model 

 

Da  110−  210−  310−  410−  

Forcheimer model 5.299     7.033     8.834     9.609     

Brinkman model [7] 5.312     7.254     9.134    9.953     
 

The effect of Forcheimer additional term is illustrated also in Fig. 1 where the vertical 
velocity profiles at the horizontal midplane are presented for both Brinkman and Forcheimer 
model for two different Darcy numbers, 210−=Da  and 410−=Da . For a small Darcy 
number the vertical velocity distribution shows its largest gradient near the vertical walls. But 
when Da  is increased the maximum velocity reduces and the velocity peaks move away 
from the walls. It can be seen that the difference between both models is minimal.  

 

 

Figure 1.: Vertical velocity profiles (left half of the cavity) at the horizontal midplane for a 
modified Rayleigh number 100* =Ra  at two various values of Darcy number 

 
The complete analysis for different values of *Ra  and φ  will likely serve to confirm the 

fact that, when using the Brinkman-Forcheimer momentum equation, the effect of the 
additional inertia term (Forcheimer term) is not considerable for the moderate values of the 
governing parameters. 
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Conclusion 

The problem of natural convection in porous cavity heated from the side saturated with 
Newtonian fluid is investigated utilizing a Boundary Domain Integral Method (BDIM). The 
Brinkman-Forcheimer extended Darcy model is used to examine the influence of the 
additional inertia term. The inclusion of the Forcheimer term in the momentum equation leads 
to a reduction of the heat transfer rate but the results indicates that the effect on the heat 
transfer results is minimal. The numerical code becomes more complex and also the 
computation time required to achieve convergence is increased.  Therefore it is possible to 
conclude that in the range covered by the present investigation the Forcheimer term is not 
really relevant to the calculation of the global heat transfer parameter, as reported in the 
literature in which the calculations were performed with other numerical methods. 
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