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Summary 

      Based on the newly derived variational principle of elastica exclusively 
expressed in terms of the rotation of beam, the finite element method is 
formulated for the analysis of plane deformation of elastica. Numerical results 
are compared with the analytical and numerical solutions, showing the 
effectiveness of the proposed finite element analysis of elastica. 
     

Introduction 

      Finite element analysis of elastica has not appeared in the literature since the 
variational principle of elastica had not been clarified due to the fact that the 
inextensibility of the beam yield no axial strain energy. Recently, the variational 
principle of elastica exclusively expressed in terms of the rotation of beam was 
developed by Kondo [1]. 
 
      Based on the newly derived variational principle, the finite element method 
is formulated in order to analyze the plane deformation of straight elastica. 
Numerical results show the effectiveness of the proposed finite element method 
for plane beam exhibiting the finite rotations as well as the finite displacements. 
 

Principle of Virtual Work for Elastica 

      We consider a beam subjected to distributed loads qx, qz, my and end loads 
yzx mqq ~,~,~ with the corresponding displacements 000 ,, θ−wu as shown in Fig.1. 

From the Bernoulli-Euler hypothesis, the physical strain is given by  
 

     ( ) ( )
yx z

dx
dxzxdz κε =

−′
=       (1) 

 
where κy is the generalized strain as  
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Figure 1.     Elastica Subjected to External Loads. 
 
Hooke’s law yields the physical stress 
 
      ( ) ( )zEz xx εσ =       (3) 
 
and the generalized stress 
 
      ( ) yzzxy EIdAzzM κσ == ∫∫      (4) 

 
      The principle of virtual work for the beam is expressed as 
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(5) 
 
From the inextensibility of the elastica, we have 
 

      
dx

dw
dx
du 0

0
0

0 sin1cos =+= θθ      (6) 

 
Substituting Eqs.(6) into Eq.(5), we obtain the principle of virtual work for 
elastica exclusively expressed in terms of the rotation θ0 [1] as 
 

      
( )

( ) [ ] 0~cos0~

sin0~

,00000

0 000

=−−
+







 ′++










 ′+−+

=∫

∫ ∫∫

lxyy

x

zz

l x

xx

l

yy

mdxmxdqq

xdqqdxM

δθδθθ

θδκ

  (7) 

x

x = 0 x = l 

( ) ( )0,0~
0wqz  

( ) ( )0,0~
0uqx  

z 

( ) ( )0,0~
0θ−ym  

0, θ−ym  

qx, u0 

qz, w0 

( ) ( )lulqx 0,~  

( ) ( )llmy 0,~ θ−  

( ) ( )lwlqz 0,~  

749

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



Finite Element Formulation for Elastica 

     We consider a two-node element subjected to distributed loads qx, qy, my and 
the nodal forces ( ) ( ) ( ) ( ) 21 ,~,~;,0~,0~ MLqLqMqq zxzx −−  as shown in Fig.2.  
    
 
 
 
 
 
 
 

Figure 2.Two-Node Element for Elastica. 
 
The rotation of the element is approximated by the linear shape functions in 
terms of the nodal displacements u as 
 
      ( ) [ ] [ ]02010 1 θθθ =−= TLxLxx uu    (8) 
 
Introducing Eq.(8) into Eq.(7), we get 
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which gives 
 
      X = K u + P       (10) 
 
where X and K are the nodal forces and the stiffness matrix, respectively, 
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and P are the equivalent nodal forces due to external loads 
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      By assembling all the element stiffness equations given by Eq.(10), we 
obtain the global stiffness equations as 
 
      PuKR +=        (13) 
 
which can be solved by the Newton-Raphson method. 
 

Cantilever with a Vertical End Load 

We analyze a horizontal cantilever subjected to a vertical end load as shown in 
Fig.3. The end displacements δ and ∆ are shown in Fig.4 as a function of 
       
 
 
 
 
 
 
 
 

Figure 3     Cantilever with a Vertical End Load. 
 

 
Figure 4.     Load-Displacement Relations for Cantilever with a Vertical Load. 

� � � � 

∆ 
x 

δ 

L 

P 
z 

O 

751

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

Proceedings of the 2004 International Conference on 
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



load P together with the closed form solution by the elliptic functions and 
integrals [2]. It can be seen that the finite element predictions are in good 
agreement with the exact solution. 
 

Cantilever Subjected to Distributed Compressive Load 

      We consider the buckling of a horizontal cantilever subjected to uniformly 
distributed horizontal compressive load ο

xq−  as shown in Fig.5. Load-deflection 
relation is shown in Fig.6 together with the analytical solution by the 
perturbation method [2] where ο

crq is the buckling load of the beam. 
       
 
 
 
 
 
 
 

Figure 5.     Cantilever Subjected to Distributed Compressive Load. 
 

  
Figure 6.     Load-Deflection Relation for Cantilever Subjected to Distributed 
Compressive Load. 
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Tapered Cantilever with Vertical End Load 

      We analyze a horizontal tapered cantilever subjected to a vertical end load as 
shown in Fig.7. The end displacements δ and ∆ are shown as a function of the 
load P in Fig.8 together with the analytical solution by the numerical integration 
[3]. 
 
 
 
 
 
 
 
 
 

Figure 7.      Tapered Cantilever with a Vertical End Load. 
 

  
Figure 8.     Load-Displacement Relation for Tapered Cantilever with a Vertical 
End Load (t1/t0 =2/3). 
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