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Summary

The usefulness of plate theories resides in that they reduce complicated three-
dimensional problems to simpler ones in two dimensions without compromising
the essential information needed in the study of the phenomenon of bending. In
this paper we solve the initial value problem governing the motion of an infinite
thermoelastic plate, finding the solution in terms of “initial” and “area” potentials.
This is a fundamental preliminary step in the construction of boundary element
methods for finite plates.

Formulation of the Problem

Consider an infinite elastic plate of thicknessh0 = const> 0, which occupies
a regionR2 × [−h0/2, h0/2] in R3. The displacement vector at a generic point
x′ at t ≥ 0 is v(x′, t) = (v1(x′, t), v2(x′, t), v3(x′, t))T, where the superscriptT
signifies matrix transposition. Letx′ = (x, x3), with x = (x1, x2) ∈ R2. In
plate models with transverse shear deformation it is assumed [1] thatv(x′, t) =
(x3u1(x, t), x3u2(x, t), u3(x, t))T. If thermal effects are taken into account, we
also introduce the “averaged” temperature across thickness [2], denoted byu4.
Then the functionU(x, t),U = (uT, u4)T,u = (u1, u2, u3)T, satisfies the equation

B0∂
2
t U(x, t) + B1∂tU(x, t) +AU(x, t) = Q(x, t), (x, t) ∈ G; (1)

hereG = R2 × (0,∞), B0 = diag{ρh2, ρh2, ρ, 0}, ∂t = ∂/∂t, ρ > 0 is the
constant density of the material,

B1 =




0 0 0 0
0 0 0 0
0 0 0 0

η∂1 η∂2 0 κ−1


 , A =


 A

h2γ∂1

h2γ∂2

0
0 0 0 −∆


 ,

A =



−h2µ∆− h2(λ + µ)∂2

1 + µ −h2(λ + µ)∂1∂2 µ∂1

−h2(λ + µ)∂1∂2 −h2µ∆− h2(λ + µ)∂2
2 + µ µ∂2

−µ∂1 −µ∂2 −µ∆


,
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∂α = ∂/∂α, α = 1, 2, η,κ, and γ are positive constants,λ and µ are the
Lamé constants of the material satisfyingλ + µ > 0, µ > 0, andQ(x, t) =
(q(x, t)T, q4(x, t))T, whereq(x, t) = (q1(x, t), q2(x, t), q3(x, t))T is a combina-
tion of the forces and moments acting on the plate and its faces andq4(x, t) is a
combination of the averaged heat source density and the temperature and heat flux
on the faces.

The classical initial value (Cauchy) problem for (1) consists in finding a function
U ∈ C2(G), u ∈ C1(Ḡ), u4 ∈ C(Ḡ), satisfying (1) and

U(x, 0) = U0(x), ∂tu(x, 0) = ψ(x), x ∈ R2, (2)

whereU0 = (ϕT, θ)T, ϕ = (ϕ1, ϕ2, ϕ3)T, andψ = (ψ1, ψ2, ψ3)T are given.
H1,κ(G), κ > 0, is the space of four-component distributionsU(x, t) onG with

norm ‖U‖21,κ;G =
∫
G

e−2κt
{|U(x, t)|2 + |∂tU(x, t)|2 +

4∑
i=1

|∇ui(x, t)|2} dx dt.

An equivalent norm is
{ ∫

G

e−2κt
[
(1 + |ξ|)2|Ũ(ξ, t)|2 + |∂tŨ(ξ, t)|2] dξ dt

}1/2
,

whereŨ(ξ, t) = (ũ(ξ, t)T, ũ4(ξ, t))T, ũ(ξ, t) = (ũ1(ξ, t), ũ2(ξ, t), ũ3(ξ, t))T, is
the Fourier transform ofU(x, t) with respect tox. Below we do not distinguish
between equivalent norms and denote them by the same symbol.

The variational formulation of problem (1), (2) consists in findingU ∈ H1,κ(G)
for someκ > 0, which satisfies

∞∫

0

[
a(u,w)− (B1/2

0 ∂tu, B
1/2
0 ∂tw)0 + h2γη−1κ−1(w4, ∂tu4)0

+ h2γη−1(∇w4,∇u4)0 − h2γ(∇w4, ∂tu)0 + h2γ(∇u4, w)0
]
dt

= (B0ψ, γ0w)0 +

∞∫

0

[
(q, w)0 + h2γη−1(w4, q4)0

]
dt

for anyW ∈ C∞0 (Ḡ), andγ0U = U0, whereB0 = diag{ρh2, ρh2, ρ}, (· , ·) is the
inner product inCm, (· , ·)0 is the inner product in

[
L2(R2)

]m
for any m ∈ N,

γ0 is the continuous trace operator from the space of indexm ∈ N with weight
exp(−2κt), t > 0, of functions inG, to the corresponding Sobolev space of index
m− 1/2 of functions inR2, anda(u,w) = 2

∫
R2

E(u,w) dx is a sesquilinear form

in whichE(u, u) is the potential energy density of the plate [1]. We remark that if
f ∈ C2(R2) andg ∈ C∞0 (R2), then(Af, g)0 = a(f, g).

Theorem 1. Problem(1), (2)has at most one solution of classH1,κ(G).
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The solution of (1), (2) is the sum of the solution of the problem for the homo-
geneous system (1) with the given initial data and of that for the nonhomogeneous
system (1) with zero initial data.

The Homogenous Equation

First, letQ(x, t) = 0. Then we seekU ∈ H1,κ(G) that satisfies

∞∫

0

[
a(u,w)− (B1/2

0 ∂tu, B
1/2
0 ∂tw)0 + h2γη−1κ−1(w4, ∂tu4)0

+ h2γη−1(∇w4,∇u4)0 − h2γ(∇w4, ∂tu)0 + h2γ(∇u4, w)0
]
dt

= (B0ψ, γ0w)0 ∀W = (wT, w4)T ∈ C∞0 (Ḡ) (3)

andγ0U = U0 = (ϕT, θ)T.
We denote byD(x, t) a matrix of fundamental solutions for (1) and define

the “initial” potentials of the first kind of densityF (x), F = (fT, f4)T, f =
(f1, f2, f3)T,

J (x, t) = (JF )(x, t) =
∫

R2

D(x− y, t)F (y)dy, (x, t) ∈ G,

and of the second kind of densityG(x), G = (gT, g4)T, g = (g1, g2, g3)T,

E(x, t) = (EG)(x, t) =
∫

R2

∂tD(x−y, t)G(y)dy = ∂t(JG)(x, t), (x, t) ∈ G.

We writeJ = (jT, j4)T, j = (j1, j2, j3)T, andE = (eT, e4)T, e = (e1, e2, e3)T.

Lemma 2. (i) If f ∈ H1(R2) and f4 ∈ H2(R2), thenJF ∈ H1,κ(G) for any
κ > 0.

(ii) If g ∈ H3(R2) andg4 ∈ H4(R2), then EG ∈ H1,κ(G) for anyκ > 0.

Lemma 3. (i) If f ∈ H1(R2) and f4 ∈ H2(R2), thenJF ∈ H1,κ(G) for any
κ > 0, j(x, t) → 0, ast → 0, in H2(R2), j4(x, t) → κf4(x), ast → 0, in H1(R2),
andJ (x, t) satisfies

∞∫

0

[
a(j, w)− (B1/2

0 ∂tj, B
1/2
0 ∂tw)0 + h2γη−1κ−1(w4, ∂tj4)0

+ h2γη−1(∇w4,∇j4)0 − h2γ(∇w4, ∂tj)0 + h2γ(∇j4, w)0
]
dt

= (f, γ0w)0 ∀W ∈ C∞0 (Ḡ).
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(ii) If g ∈ H3(R2) and g4 ∈ H4(R2), thenEG ∈ H1,κ(G) for any κ > 0,
e(x, t) → B−1

0 g(x), as t → 0, in H3(R2), e4(x, t) → −(ρh2)−1κη div g(x) +
κ2∆g4(x), ast → 0, in H2(R2), andE(x, t) satisfies

∞∫

0

[
a(e, w)− (B1/2

0 ∂te,B
1/2
0 ∂tw)0 + h2γη−1κ−1(w4, ∂te4)0

+ h2γη−1(∇w4,∇e4)0 − h2γ(∇w4, ∂te)0 + h2γ(∇e4, w)0
]
dt

= κh2γ(g4, div(γ0w))0 ∀W ∈ C∞0 (Ḡ).

Theorem 2. If ϕ ∈ H3(R2), θ ∈ H2(R2), ψ ∈ H1(R2), andf = B0ψ, f4 =
κ−1θ + η div ϕ, g = B0ψ, and g4 = 0, thenJF + EG is the solution of(3) in
H1,κ(G) for anyκ > 0,

γ0(JF + EG) = (ϕT, θ)T,

and

‖JF + EG‖1,κ;G ≤ c
{‖ϕ‖3 + ‖θ‖2 + ‖ψ‖1

}
.

LetH′1,κ(G) be the space that coincides withH1,κ(G) as a set but is equipped
with the norm

‖U‖′1,κ;G =
{ ∫

G

e−2κt
[
(1 + |ξ|)2|Ũ(ξ, t)|2 + |∂tũ(ξ, t)|2]dξdt

}1/2

.

Theorem 3. If

ϕ ∈ Hm+1(R2), θ ∈ Hm(R2), ψ ∈ Hm(R2), m = 1, 2,

ϕ ∈ H2m−1(R2), θ ∈ H2m−2(R2), ψ ∈ H2m−3(R2), m ≥ 3,

andf = B0ψ, f4 = κ−1θ + η div ϕ, g = B0ϕ, andg4 = 0, thenJF + EG is the
solution of(3) in H′m,κ(G) for anyκ > 0,

γ0(JF + EG) = (ϕT, θ)T,

and

‖JF + EG‖′m,κ;G ≤ c(‖ϕ‖m+1 + ‖θ‖m + ‖ψ‖m), m = 1, 2,

‖JF + EG‖′m,κ;G ≤ c(‖ϕ‖2m−1 + ‖θ‖2m−2 + ‖ψ‖2m−3), m ≥ 3.
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Homogeneous Boundary Conditions

Now letϕ(x) = θ(x) = ψ(x) ≡ 0. Then we seekU ∈ H1,κ(G) that satisfies

∞∫

0

[
a(u,w)− (B1/2

0 ∂tu, B
1/2
0 ∂tw)0 + h2γη−1κ−1(w4, ∂tu4)0

+ h2γη−1(∇w4,∇u4)0 − h2γ(∇w4, ∂tu)0 + h2γ(∇u4, w)0
]
dt

=

∞∫

0

[
(q, w)0 + h2γη−1(w4, q4)0

]
dt ∀W ∈ C∞0 (Ḡ) (4)

andγ0U = 0.
We introduce the so-called area potentialU(x, t) of density Q(x, t), Q =

(qT, q4)T, q = (q1, q2, q3)T, of class C∞0 (G), by

U(x, t) = (UQ)(x, t) =
∫

G

D(x− y, t− τ)Q(y, τ) dy dτ, (x, t) ∈ G.

We recall thatHm(R2) is the (vector or scalar) standard Sobolev space with
indexm ∈ R and norm

‖u‖m =
{ ∫

R2

(1 + |ξ|2)m|ũ(ξ)|2 dξ

}1/2

.

Let Hm,p(R2), m ∈ R, p ∈ C, be the space that coincides withHm(R2) as a set
but is endowed with the norm

‖u‖m,p =
{ ∫

R2

(1 + |ξ|2 + |p|2)m|ũ(ξ)|2 dξ

}1/2

.

We fix κ > 0 and consider the spacesHLm,k,κ(R2) andHL
m,k,κ(R2), k ∈ R, of

functionsû(x, p) with the following properties:
(i) û(x, p), as a mapping fromCκ to Hm(R2), is holomorphic;
(ii) û ∈ HLm,k,κ(R2) satisfies

[û]2m,k,κ = sup
σ>κ

∞∫

−∞
(1 + |p|2)k‖ŭ(ξ, p)‖2m dτ < ∞; (5)
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û ∈ HL
m,k,κ(R2) satisfies

‖û‖2m,k,κ = sup
σ>κ

∞∫

−∞
(1 + |p|2)k‖ŭ(ξ, p)‖2m,p dτ < ∞. (6)

Equalities (5) and (6) define, respectively, the norms[û]m,k,κ and ‖û‖m,k,κ on
HLm,k,κ(R2) andHL

m,k,κ(R2).
LetHL−1

m,k,κ(G) andHL−1

m,k,κ(G) be the spaces of the inverse Laplace transforms
u(x, t) of û ∈ HLm,k,κ(R2) andû ∈ HL

m,k,κ(R2), with norms[u]m,k,κ;G = [û]m,k,κ

and‖u‖m,k,κ;G = ‖û‖m,k,κ, letHL−1

m;k,l;κ(G) = HL−1

m,k,κ(G) × HL−1

m,l,κ(G), where
m, k, l ∈ R, be the space of allU = (uT, u4)T, u = (u1, u2, u3)T, with norm
[U ]m;k,l;κ;G = [u]m,k,κ;G + [u4]m,l,κ;G, and letHL−1

m;k,l;κ(G) = HL−1

m,k,κ(G) ×
HL−1

m,l,κ(G), m, k, l ∈ R, be equipped with the norm‖U‖m;k,l;κ;G = ‖u‖m,k,κ;G +
‖u4‖m,l,κ;G. We writeHL−1

1;0,0;κ(G) = HL−1

1,κ (G) and‖U‖1;0,0,κ;G = ‖U‖1,κ;G. It

is clear thatHL−1

1,κ (G) is the subspace ofH1,κ(G) consisting of allU = (uT, u4)T

such thatγ0U = 0.

Theorem 4. For anyQ ∈ HL−1

−1;1,1;κ(G), κ > 0, equation(4) has a unique solution

U ∈ HL−1

1,κ (G). If Q ∈ HL−1

−1;k,k;κ(G), thenU ∈ HL−1

1;k−1,k−1;κ(G) and

‖U‖1;k−1,k−1,κ;G ≤ c[Q]−1;k,k,κ;G.

The above assertions are proved by investigating the mapping properties of the
operators defined by the plate potentials in the appropriate spaces.

The corresponding results without thermal effects were obtained in [3].
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