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Summary

The existence of “crack front waves” on the edge of a crack propagating in “opening”
mode was rigorously established by making use of a general solution for the perturbation of
the crack’s edge, developed by J.R. Willis and A.B. Movchan. Corresponding perturbation
formulae for a crack under shear loading are here exploited to investigate the possibility
of crack front waves on a shear crack. In contrast to the opening mode case, crack front
waves do not exist for all crack speeds, but only for speeds above a certain threshhold that
depends upon the mixture of Modes II and III.

Introduction

Crack front waves were discovered during a computation by Rice and Morrissey [1]
and their existence was confirmed analytically [2] by developing a “dispersion relation”
from a general solution [3] for the dynamic perturbation of a crack edge under Mode I
loading, in combination with the Griffith energy balance, linearised with respect to the
perturbation. This demonstrated that perturbations of the crack edge can propagate with-
out dispersion or attenuation, with a speedv along the edge that depends on the speedV
of propagation of the crack. The resultant speed of the trace of the disturbance through
the body,(V 2 + v2)1/2, likewise varies; it is close to but definitely less than the speed of
Rayleigh waves. Subsequent work [4] demonstrated that crack front waves do, in fact,
display some dispersion, the solution given in [2] having neglected a term that becomes
unimportant as frequency and wavenumber tend to infinity; [4] developed the leading-order
“finite-frequency” correction and the corresponding leading-order contribution to attenua-
tion due to viscoelasticity. The present work considers the propagation of a perturbation
of the edge of a crack when it is loaded in shear. The basic perturbation solution has been
given by Movchan and Willis [5]. It is relatively more complicated than the opening mode
case because there is inevitably coupling between Modes II and III. Implications of the
Griffith energy balance are analysed, as in [2], in the high-frequency limit, though finite-
frequency corrections could certainly be obtained. The waves that are possible depend on
the ratio of Modes II and III in the original loading of the unperturbed crack.

The perturbation solution

The configuration of concern is that of a crack, occupying the region defined by

−∞ < x1 < Vt + εφ(x2,t), −∞ < x2 < ∞, x3 = 0. (1)

The medium through which the crack propagates is uniform, isotropic and elastic, with
Lamé moduliλ, µ and densityρ; the speeds of longitudinal and shear waves are denoteda
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andb respectively, wherea2 = (λ + 2µ)/ρ, b2 = µ/ρ. It is loaded in such a way that the
stress fieldσA

i j would be generated if the crack were not present. This stress field is taken
to be independent of the coordinatex2 and to depend on(x1,x3, t) only in the combination
(x1−Vt,x3), so that the unperturbed motion of the crack (ε = 0) is possible. The presence
of the crack inducesadditional stress and displacement fields,σ i j andui, which satisfy the
equations of elastodynamics, the boundary conditions

σi3 +σA
i3 = 0 (2)

on the crack surfaces, and a “radiation condition” that this field is composed only of waves
travelling outwards from the crack.

Movchan and Willis [5] developed expressions for the perturbations, to first order inε,
of the stress intensity factors as follows.

∆K = ε{QT ∗ (φK)−Eφ′K+(π/2)1/2φM−φ(QT ∗K)}. (3)

Here,K is a column vector(KII ,KIII)T , and∆K andM are similarly column vectors.Q is
a 2×2 matrix-valued function of(x2, t), and the symbol∗ denotes convolution with respect
to these variables.E is the skew matrix

E =
(

0 1
−1 0

)

. (4)

The applied loading generates stresses for the unperturbed crack that take the form, at small
distanceX from the edge of the crack and in its plane,

(

σ13

σ23

)

∼ K(2πX)−1/2−P+ MX1/2. (5)

For the loading considered,K, P andM are constants2, and the speed of the crack is such
that the Griffith energy balance

KT A(V )K = Gc (6)

is satisfied, whereA(V ) is a diagonal matrix with entries given in [6], for instance. The
matrix-valued functionQ is given in [5]; it is obtained from a near-crack-tip expansion
of the dynamic Mode II/III weight function, itself obtained from the explicit solution of a
matrix Wiener–Hopf problem. The formulae are lengthy and are not repeated here.

2In the case of general loading, these coefficients would depend onx2 andt and the coefficient of
X1/2 would becomeM− (2/π)1/2QT ∗K. Equation (3) is applicable to the general case.
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Equation governing φ
For the perturbed solution, the Griffith energy balance (6) must remain satisfied, at

each point of the crack edge, withK replaced byK+∆K andV replaced by(V + ε φ̇)(1+
ε2φ2

,2)
−1/2. Expanded to first order inε, this requires that

2KT A(V )∆K+ εφ̇KT A ′(V )K = 0, (7)

where∆K is given in terms ofφ by equation (3). Now seeking a solution proportional to
exp[−i(ωt + kx2)], ω andk have to be related so as to satisfy the dispersion relation that
comes from Fourier transforming (7), together with (3):

2(KT AQ̃T K+ ikKT EK)− iωKTA ′K+(π/2)1/2M = 0, (8)

whereQ̃ represents the Fourier transform ofQ, given explicitly in [5]. In fact, Q̃ is a
homogeneous function of degree 1 in(k,ω) and therefore the term involvingM can be
neglected at high frequency. The relation (8) then becomes a non-dispersive equation for
the wave speedv = −ω/k. Remarkably, it is possible toprove that the imaginary part of
the left side of (8) vanishes identically, for all realv such that(v2 +V 2)1/2 is less than the
speed of Rayleigh waves. Therefore, it is only necessary to plot its real part as a function
of v, and see whether it is ever zero.

Results

The real part of (8), withM → 0 andv = −ω/k, can be expressed in the form

1
4

[

K2
IIAII(V )PII(v)+ K2

IIIA(V )PIII(v)
]

+ isgn(v)KIIKIII
(a+b+−a+b+)
(a+a− + b+b−)

= 0. (9)

The terms are not defined in detail here, butPII(v) = 0 would describe a crack front wave
under pure Mode II loading, andPIII = 0 would define a Mode III crack front wave. The
corresponding relation defining the Mode I crack front wave is denoted

PI(v) = 0. (10)

Figure 1 shows plots ofPI , PII andPIII , for the caseV = 0.2b. For all of the results
presented here,a2/b2 = 3, corresponding to a Poisson’s ratio of 1/4. The graph ofPI

crosses the axis, but those ofPII andPIII do not. Thus, there is a crack front wave, whose
speedv is about 0.86b, for a crack under Mode I loading, but no such wave for pure Mode
II or pure Mode III loading, for this crack speed.

Figure 2, however, shows plots forV = 0.8b. This time, thereis a Mode II crack front
wave, for whichv ≈ 0.28b corresponding to(v 2 +V 2)1/2 ≈ 0.848b. The corresponding
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Figure 1: The functionsPI(v), PII(v) andPIII(v), plotted againstv/b, for the case
V/b = 0.2.

Rayleigh wave speed is 0.9194b. The Mode I crack wave speed isv ≈ 0.43b, so that
(v2 +V 2)1/2 ≈ 0.908b. The crack speedV below which there is no Mode II crack front
wave is approximately 0.715b.

There is never, in fact, a pure Mode III crack front wave. However, sincePIII < 0,
there is the possibility of finding crack front waves under mixed Modes II and III loading,
at crack speeds for which no pure Mode II crack front wave exists. Figure 3 shows an
example for whichKII = 1 andKIII = 0.4, with V = 0.5b. There is a crack front wave,
for which v ≈ 0.58b. It is interesting also to note that the speed of the wave is sensitive to
direction, since equation (8) is unchanged if the signs of bothK IIKIII andv are changed.
There is, in fact, no crack front wave withv > 0 whenKII = 1, KIII = −0.4 andV = 0.5b.
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Figure 2: The functionsPI(v), PII(v) andPIII(v), plotted againstv/b, for the case
V/b = 0.8.
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Figure 3: Plot of the left side of equation (8), forKII = 1.0 andKIII = 0.4 against
v/b, for the caseV/b = 0.5.
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