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Summary

A new computational method for solving transient thermoelastic boundary value
problems in continuously nonhomogeneous solids, based on the meshless local Petrov-
Galerkin (MLPG) method, is proposed in the present paper. If the test function in the
MLPG is selected as the solution of the governing equation (fundamental solution) or as
the solution of a part of the governing equations (parametrix), the unsymmetric weak
form is transformed in such a way to the local boundary integral equations (LBIEs). The
boundary-domain integral formulations for the temperature and the mechanical quantities
with a static fundamental solution are derived in Laplace transform domain. The moving
least squares (MLS) method is used for the approximation of physical quantities.

Introduction

The development of approximate methods for the numerical solutions of boundary
value problems has attracted the attention of engineers, physicists and mathematicians for
a long time. The finite element method (FEM), for modeling of complex problems in
applied mechanics and related fields, is well established. It is a robust and thoroughly
developed technique, but it is not without its own shortcomings. The boundary element
method (BEM) has become an efficient and popular alternative to the FEM, especially for
stress concentration problems, or for boundary value problems wherein a part of the
boundary extends to infinity. In spite of the great success of the FEM and BEM as the
most effective numerical tools for the solution of boundary value problems in many
complex engineering applications, there has been a growing interest in the so-called
meshless methods over the past decade [1,2].

In comparison to the conventional FEM or BEM, the meshless approach has certain
advantages. In the meshless methods, nodal points are randomly spread over the domain
of the analyzed body. Every node is surrounded by a simple surface centered at the
collocation point. On the surface of subdomains the local boundary integral equations are
written. In the present paper, nonstationary two-dimensional (2-d) thermoelastic
problems in continuously nonhomogeneous medium are analyzed. It is assumed that the
temperature and the displacement fields are uncoupled. Then, in the first step, the
temperature field is analyzed. The transient heat conduction problem is described by a
parabolic partial differential equation. To eliminate the time dependence of the

                                                            
1 Institute of Construction and Architecture, Slovak Academy of Sciences, 84503 Bratislava,  Slovakia
2 Department of Civil Engineering, University of Applied Sciences Zittau/Görlitz, D-02763 Zittau, Germany

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

278

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



differential equation, the Laplace transform technique is used. A pure boundary integral
equation for the global boundary requires the knowledge of the fundamental solution in
the Laplace transform domain, which is not known for a general continuously
nonhomogeneous medium. In the present work, a simpler fundamental solution
corresponding to the Poisson´s equation is adopted which leads to a boundary-domain
integral formulation [3]. Since the boundary-domain formulation in the global BEM is
numerically not efficient, we apply this formulation to small subdomains, which results in
a local boundary integral equation formulation. If the thermal field is known, the
mechanical quantities are obtained in the second step from the solution of the local
boundary integral equations, which are reduced to the elastostatic LBIEs with known
redefined body forces. Stationary thermoelastic problems in a homogeneous body have
been analyzed by LBIEs in [4]. This paper is devoted to nonstationary thermoelastic
analysis of continuously nonhomogeneous solids. The redefined body force is
proportional to the temperature gradients.

Local boundary integral equations and their numerical solution

Consider a boundary value problem defined in the quasi-static uncoupled
thermoelasticity for a continuously nonhomogeneous medium, which in 2-d is described
by the governing equations
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where ( , )tθ x and ( , )iu tx are the temperature and the displacement fields,
respectively, k and κ  stand for the thermal conductivity and diffusivity, ( , )Q tx is the
density of the body heat sources, µ and λ  are Lame’s constants, and (2 3 )γ µ λ α= + ,
with α being the coefficient of the linear thermal expansion, respectively. 

We assume an isotropic and linear elastic continuum with Young´s modulus
depending on the Cartesian coordinates and Poisson´s ratio being constant. Since
equations (1) and (2) are uncoupled, they can be solved separately. In the first step we
solve the heat conduction equation (1). To eliminate the time dependence of temporal
derivative from the diffusion equation (1) the Laplace transform is applied, which yields
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where p is the Laplace transform parameter and )0,(),(),( xxx θ+= pQpF is the
redefined body heat source in the Laplace transform domain with the initial boundary
condition for the temperature field. The solution of the governing equation (3) can be
found in a weak form by using the fundamental solution

   * 1 1( , ) ln
2 r

θ
π

=x y   .                                                                                                (4)

In equation (4) | | .r = −x y  The integral representation for the Laplace transform of the
temperature can be derived for a subdomain sΩ , which is a part of the analyzed domain
Ω , i.e., sΩ ⊂Ω . The following local boundary integral equation (LBIE) holds over the

subdomain sΩ [3]
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Note here that non of the boundary densities in the Laplace transformed domain are
prescribed on the local boundary s∂Ω as long as it lies entirely inside Ω . To reduce the
number of the unknowns on  s∂Ω the concept of a companion solution can be utilized
[4]. For a circular subdomain one can introduce a modified fundamental solution

 * 01( , ) ln
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which is vanishing on the boundary of the circular subdomain of radius 0r . Since the
integral equation is also valid for the modified fundamental solution *( , )θ x y , one can
rewrite equation (5) as
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Once equation (7) has been solved numerically for discrete values of the Laplace
transform parameter, the time-dependent values of the corresponding transformed
quantities in the previous consideration can be obtained by an inverse transform. In the
present analysis, the sophisticated Stehfest´s algorithm is used. In the second step, the
Lame-Navier’s governing equation (2) is solved. The same procedure for deriving LBIEs,
as in the case of the diffusion equation, is applied to obtain the LBIEs for the partial
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differential equations (2). As the test function in the weak formulation we use the
displacement fundamental solution ijU with Lame’s constant 1µ = . Then, the LBIEs on
the subdomain sΩ have the following form
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To eliminate the tractions on s∂Ω the modified fundamental solution *
ijU [5] is used.

Since *
ijU is vanishing on the boundary of the circular subdomain, we can rewrite

equation (8) as
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The moving least squares (MLS) approximation is applied to interpolate the
unknown/known densities in the LBIEs (7) and (9). Then, the LBIEs at the internal
nodes are converted into a set of  linear algebraic equations, which can be solved
numerically. 

Numerical results and discussions

Numerical results for a finite strip with a unidirectional variation of the thermal
conductivity, diffusivity and expansion is presented to test the accuracy of the present
LBIEM. An exponential spatial variation of the following form is considered

  1
0( ) xk k eγ=x   ,    1

0( ) xeγκ κ=x  ,      1
0( ) xe δα α −=x    ,                                               (10)

with 4 2 1
0 0.17 10 m sκ − −= × and 1 1

0 17 degk Wm− −= . In particular, we have used the
following exponential parameters 10.2 cmγ δ −= = . 

The Young’s modulus is considered to be constant, since in many ceramic/metal
functionally graded materials (FGM) systems on the zirconia/nickel basis the Young’s
modulus of both constituents are similar. However, the present method can be applied to
more general cases with variable Young’s modulus. On both opposite sides parallel to
the 2x -axis temperatures are prescribed. One side is kept to zero temperature, which is
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the initial value, and the other has the Heaviside step time variation 2( , ) ( )x t T H tθ = ⋅
with 1 degT = . On the top and bottom sides of the strip the heat flux vanishes. In our
numerical calculations, a square with a side-length 0.04a m=  and a regular node
distribution with equal 16 boundary and interior nodes are used for the MLS
approximation. An excellent agreement between the numerical and the analytical results
for the time variation of the temperature is observed in Fig. 1. 

      Figure 2 shows the results of the numerically computed stresses 22σ at 2 / 2x a=
along the on 1x -axis at two different time instants. The thermal stresses induced in the
strip are given by

  1
22 1 1

( )( , ) ( , )
1

x Ex t x tασ θ
ν

= −
−

.                                                                                       (11)

Our numerical results are in a good agreement with the analytical ones (11). The maximal
relative error for all computed nodes and over the whole analyzed time interval is less
than 1%. In FGM strip the thermal expansion is decreasing with increasing 1x -
coordinate, see equation (10). Then, the stresses on the right-hand lateral side of the FGM
strip with prescribed heat shock will be reduced in FGM strip in comparison with a
homogeneous one.
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Fig. 1   Time variation of the temperature in a FGM strip (x2 /a =0.5)

Fig. 2  Comparison of stress variation in homogeneous and FGM strip (x2 /a=0.5)
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