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Summary 

The novel concept “tangential stress rate relaxation”, abbreviated as “tangential re-
laxation”, is proposed in order to predict rigorously the plastic instability phenomena in 
which the stress rate has a tangential component deviating severely from the proportional 
loading. Further, the constitutive equation based on this concept is formulated. 

Introduction 

Traditional plasticity is concerned only with the stress rate component normal to the 
yield surface but is independent of the tangential component. Thus, it predicts an unreal-
istically stiff mechanical response in plastic instability phenomena in which the stress rate 
has a tangential component deviating severely from the proportional loading. In order to 
improve this defect in the traditional theory, various constitutive models have been pro-
posed so far. Among them only the tangential inelasticity model [1] which incorporates 
the inelastic strain rate induced by the stress rate component tangential to the subloading 
surface is applicable to the general loading process, which is regarded as the modification 
of Rudnicki and Rice’s [2] rate form of the J2-deformation theory by the concept of the 
subloading surface model [3, 4]. However, it is not derived from the physically rigorous 
background. 

In this article the novel concept “tangential stress rate relaxation”, abbreviated as 
“tangential relaxation”, is proposed in order to predict rigorously the plastic instability 
phenomena and the constitutive equation based on this concept is formulated. 

Outline of the Subloading Surface Model 

Let the strain rate  D be additively decomposed into the elastic strain rate eD  and the 
inelastic strain rate pD , i.e. 

= pe +D D D ,                                                                                                                              (1) 

where eD  is given by 
1=e −D E σo .                                                                                                              (2) 

σ  is the Cauchy stress and ( )o  indicates the proper corotational rate (see Appendix) and 
the fourth-order tensor E is the elastic modulus.  

__________________________________________ 
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The following subloading surface is introduced. 

( ) ( )=ˆf RF H, Hσ ,                                                                                                                (3) 

ˆ ≡ −σ σ α .                                                                                                                           (4) 
The scalar H and the second-order tensor H are the isotropic and the anisotropic harden-
ing variables, respectively, α  is the kinematic hardening variable, i.e. the back stress. 
The function f is assumed to be homogeneous of degree one in the stress σ̂ . R is the ratio 
of the size of the subloading surface to that of the normal-yield surface and is called the 
normal-yield ratio. Its evolution equation is given as follows: 

 =   for p pR U•
≠D D 0 ,                                                                                                        (5) 

where U is a monotonically-decreasing function of the normal-yield ratio R, fulfilling the 
conditions 
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                                                                                                            (6) 

Further, assume the flow rule 

 =p λD M ,                                                                                                                 (7) 

where λ is a positive proportionality factor and M is the direction of plastic strain rate. 

Substitution of Eqs. (5) and (7) into the time-differentiation of Eq. (1) leads to  

 ( )tr= pM
λ Nσo ,                                                                                                           (8) 

where 

 
 

( )t r trˆ ˆˆ[( ) ]}{[ ]p fUFM h
RFF R

' ,1 ∂≡ + + −
∂

HN Haσ h σσ .                                    (9) 

( ) ( ) || ||( = 1)
ˆ ˆ, , f f∂ ∂

≡ ∂ ∂
H HN N

σ σ
σ σ , /dF dH'F ≡ , , ,  

Hh λ λ λ
≡ ≡ ≡Hh a α

o og
.  (10) 

The strain rate is given from Eqs. (1), (2), (7) and (8) as  

 1 ( )tr= pM
− + ND E Mσσ

oo .                                                                                             (11) 

 
Tangential Relaxation 

From Eq. (11) one has 
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 ( )tr= pM
− N MED Eσσo

o
,                           (12) 

It is observed in Eq. (12) that the relaxation is induced by the stress rate component nor-
mal to the subloading surface. Let it be called the “normal stress rate relaxation”, abbre-
viated as “normal relaxation”. Now, let it be postulated that the relaxation is induced by 
the stress rate component tangential to the subloading surface, called the tangential stress 
rate. Let it be called the “tangential stress rate relaxation”, abbreviated as “tangential re-
laxation”. Here, note that the relaxation has to be diviatoric (cf. Rudnicki and Rice’s [2]) 
and has to be directed towards in-between tangent and outward-normal to the subloading 
surface (cf. e.g. Kuroda and Tvergaard [5]). Then, let Eq. (12) be extended as 

 ( )tr= p r
M

− −N MED E σσ σo oo
,                         (13) 

while rσo is called the tangential relaxation stress rate and let it be given as 

= ( )t
n t

t

r rS d
∗

∗∗
∗ + nσσ σσ

o
o o

o PPPP
,                                                                           (14) 

where the deviatoric-tangential stress rate t∗σo  is given as follows:  

* ** *= tr( ) = ( )t
∗ ∗ ∗− − ⊗n n n nσσ σ σ σo o o oo * * *( )= − ⊗n nI σo ,                  (15) 

** ** **
( , ) ( , )   = ( || || = 1)|| ||
ˆ ˆf f∂ ∂≡ ∂ ∂( ) ( )H H Nn nN
σ σ
σ σ .                 (16) 

*( )  stands for the deviatoric component and  *I is the fourth-order deviatoric transfor-
mation tensor, i.e, 

1 1( )2 3 ijik jl il jk klijklI δ δ δ δ δ δ∗ ≡ + − .                                 (17) 
The material function Sr is a monotonically decreasing function of R, simply given by 

= nrS Rξ ,                                                     (18) 
where n is a material constant and ξ is a material parameter which is a function of stress 
and plastic internal variables in general: a material constant for metals and a function of 
stress for frictional materials. dn is a material constant by which the relaxation has the di-
rection in-between the tangent and the inward-normal to the subloading surface. 

The strain rate is expressed in terms of the stress rate from Eqs. (8), (13) and (14) as  

1 1)tr( ( )= nt tp rS d
M

− − ∗ ∗ ∗++ +N nD E M Eσ σσ σ
o

o o o PP .                                                (19) 

Then, the strain rate is additively decomposed into the elastic strain rate De, the plastic 
strain rate Dp and the tangential strain rate Dt, i.e. 
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= pe t+ +D D D D ,                                            (20) 
while the tangential strain rate is given for Eq. (19) as follows: 

1( )= nt trt S d− ∗ ∗ ∗+ nED σ σo o PP .                                                                  (21) 
The positive proportionality factor λ in the flow rule (7) is expressed in terms of 

strain rate, rewriting λ by Λ, from Eq. (19) as follows: 

) )tr( tr(
= ( )tr

r n t
p

S d
M

Λ
∗∗−

+
nN NED

EMN
σo .                                                                                            (22) 

The loading criterion for the plastic strain rate is given as follows [6]: 

:  0,

= :  0,

p

p

Λ

Λ

≠ 



>
≤

D 0

D 0
                                              (23) 

while the tangential strain rate Dt is always induced for *t ≠ 0σo . Eq. (19) is rate-nonlinear 
and thus an inverse expression becomes rather complicated form. 

Now, consider the simple case dn=0, i.e. 

= t
r rS ∗σ σo o ,                                       (24) 

for which it hold that 
)tr(= ( )trpM

Λ
+

NED
EMN

,                                                                                                                (25) 

= trSΛ ∗− −MED E σσ oo .                                                                                                   (26) 

It is obtained from Eq. (26) that 

= r tSΛ∗ ∗∗ ∗− −I ED I EMσ σo o ,  )tr( tr tr( ) ( )= Λ∗ ∗∗ ∗ ∗ ∗ ∗−n n n n n nED EMσo .     (27) 

The subtraction of the second equation from the first equation in Eq. (27) leads to 

1 ]tr tr[ { ( ( )) }= 1t rS Λ∗ ∗ ∗ ∗ ∗∗∗ −− −+ n n n nI EM EM EDI EDσo .                    (28) 

The substitution of Eq. (28) into Eq. (26) leads to the inverse expression: 

tr[ { ( ) } tr= ( ) ]1
r

r

S
SΛ Λ∗ ∗ ∗ ∗ ∗ ∗−− − − −+ n nED E I ED EM n nM I EM EDσo .             (29) 

As shown in the above formulations, the analytical expression of stress rate in terms of 
strain rate is derived for Eq. (13) with Eq. (24) and the general elastic modulus tensor E. 
On the other hand, the expression of stress rate in terms of strain rate is obtained only for 
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the Hooke's law in the models of Rudnicki and Rice [2] and Hashiguchi and Tsutsumi [1] 
( = tt rC ∗D σo ; rC : material parameter). 
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Appendix – Relations of Corotational Rates 

We should not say easily which spin is best for the corotational rate. For instance, 
compare the Jaumann rate and the corotational rate with the plastic spin. The elastoplas-
tic constitutive equation adopting the latter is described as follows: 

) ) = =p p epλ• −−( − + ( −W W W W ED E M C Dσ σ σ                                             (a.1) 

where epC  is the elastoplastic stiffness modulus tensor given by 

1ep
pM

−≡ ⊗C E EM NE .                                                                                      (a.2) 

W is the continuum spin (skew-symmetric part of the velocity gradient) and Wp is the 
plastic spin the concrete form of which may be given as follows: 

(= )p p pµ −W D Dσ σ ,                                                                                           (a.3) 
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where µ is the material parameter. 

Eq. (a.1) can be expressed as  

( (= ) )p p p p pµ µ• − −− + − + −W W ED D D D D Dσ σ σ σ σ σ σ σ σ  

2 2(= { 2 )}µλ− + − −ED M M M Mσ σ σ σ .                      (a.4) 

Adopting the Jaumann rate 

J •≡ − +W Wσ σ σ σo ,                                                                                              (a.5) 

and setting 
2 2(2 )µ+≡ − −M M M M Mσ σ σ σ ,                                                                          (a.6) 

Eq. (a.4) can be expressed as  

 t r( )= = = epJ
pM

λ− − NEDED EM ED E M C Dσo ,                                                  (a.7) 

with the plastic strain rate 

=p λD M ,                                                                                                                (a.8) 
where 

1ep
pM

−≡ ⊗C E EM NE .                                                                                          (a.9) 

Besides, Khan and Huang [7] showed that the spin with the plastic spin and the Green-
Naghdi spin RΩ  just coincide with each other for the rigid plastic materials, i.e. 

=p R−W W Ω ,                                                                                                     (a.10) 
where  

TR •
≡Ω R R .                                                                                                           (a.11) 

R is the rotational component obtained from the polar decomposition of the deformation 
gradient. Then, it holds that  

 = epR R• − −Ω Ω C Dσ σ σ .                                                                                    (a.12) 

It should be noted that Eq. (a.1) adopting the plastic spin p−W W , Eq. (a.5) 
(Jaumann rate) adopting the continuum spin W and Eq. (a.12) adopting the Green-Naghdi 
spin RΩ  describe the same material behavior in the similar or same form with different 
or same elastoplastic stiffness modulus tensor. Eventually, it would be nonsense to say 
which spin is best but the selection of spin has to be determined based on the concrete 
formulation of elastoplastic stiffness tensor. 
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