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Summary 

The novel concept “tangential stress rate relaxation”, abbreviated as “tangential re-
laxation”, is proposed in order to predict rigorously the plastic instability phenomena in 
which the stress rate has a tangential component deviating severely from the proportional 
loading. Further, the constitutive equation based on this concept is formulated. 

Introduction 

Traditional plasticity is concerned only with the stress rate component normal to the 
yield surface but is independent of the tangential component. Thus, it predicts an unreal-
istically stiff mechanical response in plastic instability phenomena in which the stress rate 
has a tangential component deviating severely from the proportional loading. In order to 
improve this defect in the traditional theory, various constitutive models have been pro-
posed so far. Among them only the tangential inelasticity model [1] which incorporates 
the inelastic strain rate induced by the stress rate component tangential to the subloading 
surface is applicable to the general loading process, which is regarded as the modification 
of Rudnicki and Rice’s [2] rate form of the J2-deformation theory by the concept of the 
subloading surface model [3, 4]. However, it is not derived from the physically rigorous 
background. 

In this article the novel concept “tangential stress rate relaxation”, abbreviated as 
“tangential relaxation”, is proposed in order to predict rigorously the plastic instability 
phenomena and the constitutive equation based on this concept is formulated. 

Outline of the Subloading Surface Model 

Let the strain rate  D be additively decomposed into the elastic strain rate eD  and the 
inelastic strain rate pD , i.e. 

= pe +D D D ,                                                                                                                                (1) 
where eD  is given by 

1=e −D E σD .                                                                                                              (2) 
σ  is the Cauchy stress and ( )D  indicates the proper corotational rate and the fourth-order 
tensor E is the elastic modulus.  
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The following subloading surface is introduced. 

( ) ( )=ˆf RF H, Hσ ,                                                                                                             (3) 

where 

ˆ ≡ −σ σ α .                                                                                                                           (4) 
The scalar H and the second-order tensor H are the isotropic and the anisotropic harden-
ing variables, respectively, α  is the kinematic hardening variable, i.e. the back stress. The 
function f is assumed to be homogeneous of degree one in the stress σ̂ . R is the ratio of 
the size of the subloading surface to that of the normal-yield surface and is called the 
normal-yield ratio. Its evolution equation is given as follows: 

 ( )=   for p pRR U•
≠D D 0 ,                                                                                              (5) 

where U is a monotonically-decreasing function of the normal-yield ratio R, fulfilling the 
conditions 

 for   = 0,( ) =
0  for   =  1,

( ( ) 0  for  1).

RRU
R

R RU
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< >

                                                                                                  (6) 

 
Let the function U satisfying Eq. (6) be simply given by  

( ) ln=RU u R− ,                                                                                             (7) 
where u is a material constant. 

Further, introduce the associated flow rule 

 =p λ ND ,                                                                                                                (8) 
where λ is a positive proportionality factor and 

( ,  ) ( ,  )  ( = 1)ˆ ˆf f∂ ∂≡ ∂ ∂
H HN Nσ σ

σ σ
.                                                                  (9) 

The proportionality factor λ  is obtained by substituting Eqs. (5) and (8) into the 
time-diffrentiation of Eq. (3) leads to 

 ( )tr= pMλ NσD ,                                                                                                             (10) 

where 

 
 

( )t r trˆ ˆˆ[( ) ]}{[ ]p fUFM h
RFF R

' ,1 ∂≡ + + −
∂

HN Haσ h σσ .                                  (11) 

dFF dH' ≡ , , ,  
Hh λ λ λ≡ ≡≡ H ah αD Di

.                                                                                    (12) 
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The strain rate is given from Eqs. (1), (2), (8) and (10) as  

 

1 1 ( )= trpM
− + ND E Nσ σD D .                                                                                                      (13) 

Tangential Relaxation 

It can be written from Eq. (13) that 

1= NpM
−ED Eσσ DD ,                                                                                          (14) 

where NσD  is the normal-stress rate, i.e. 

(tr( ) )=N ≡ ⊗N N N Nσ σσ D DD .                                                                                   (15) 

It is observed in Eq. (14) that the relaxation relevant to the normal-stress rate is in-
duced. Let it be called the “normal relaxation”. Now, it is postulated that the relaxation 
relevant to the deviatoric-tangential stess rate is also induced. Let it be referred to as the 
“deviatoric-tangential relaxation”, abbreviated as “tangential relaxation”.  In what fol-
lows, let the extended subloading surface model, called the tangential-subloading surface 
model, be formulated. 

Now, let Eq. (14) be extended as 

1 1= )( N Tp tMM
∗− −E Dσ σ σD D D ,                                                                                                    (16) 

where T
∗σD  is called the deviatoric-tangential relaxation stress rate and is given as 

|| ||
|| || )(T nt

t
t

d
∗

∗∗∗
∗ +≡ nσ σσ σ
D

D
D

D    or     || ||T nt td∗ ∗∗∗ +≡ nσ σσ D DD .                                               (17) 

The deviatoric-tangential stress rate t∗σD  is given as follows:  

= n t
∗∗∗ +σ σσD D D ,                                                                                                           (18) 

where the deviatoric-normal and tangential components of arbitrary second-order tensor A 
is defined as 

* *

* ** *

* *

,( )tr( ) =
tr( ) ( )= =

n

nt ∗

∗

∗ ∗ ∗ ∗

≡ ⊗ 


− −≡ − ⊗ 

A n A n n n A
A A A A An n n n AI

�                                                           (19) 

with 
** ** **

( , ) ( , )   = ( || || = 1)|| ||
ˆ ˆf f∂ ∂

≡
∂ ∂

( ) ( )H H Nn n
N

σ σ
σ σ .                                            (20) 
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*( )  stands for the deviatoric component and *I
�

is the fourth-order deviatoric 
transformation tensor, i.e. 

1 1( )2 3 ijik jl il jk klijklI δ δ δ δ δ δ∗ ≡ + −
�

.                                                                              (21) 

The material function tM , called the tangential-relaxation modulus, is a monotonically 
decreasing function of R and is simply given by 

1= n
tM Rξ

,                                                                                                                (22) 

where n is a material constant and ξ is a material parameter which is a function of stress 
and plastic internal variables in general: a material constant for metals and a function of 
stress for frictional materials. dn is a material constant by which the relaxation is induced 
in the inward-normal direction to the subloading surface. 

The strain rate is expressed in terms of the stress rate from Eqs. (15), (16) and (17) as  

1 1 1 ( || || )tr( )= ntp tt dM M
− ∗ ∗∗+ ++ nD E N Nσ σ σ σD D D D .                                                  (23) 

Then, the strain rate is additively decomposed into the elastic strain rate eD  and the 
inelastic strain rate Di, while the latter is further additively decomposed into the plastic 
strain rate pD  and the tangential strain rate tD , i.e. 

,   = = pe i i t+ +D D D D D D ,                                                                             (24) 

while the tangential strain rate is given for Eq. (23) as follows: 

1 ( || || )= nt t
t

t d
M

∗ ∗∗+ nD σ σD D .                                                                                 (25) 

The positive proportionality factor in the associated flow rule (8) is expressed in 
terms of  strain rate with the tangential stress rate, rewriting λ byΛ, from Eq. (23) as fol-
lows: 

1 || ||) { }( )tr( tr
tr( )=   =

( )tr
( )pp

nt tt
d

M
MM

Λ
∗ ∗∗+−

+

nNNED E
N

N NE

σ σ σ
D D

D
.                                  (26) 

The loading criterion for the plastic strain rate is given from Eq. (26) as follows  [6]: 

1 || ||) { ( )tr( tr:  } 0,

=  : otherwise

p
n

p

t tt
d

M
∗ ∗∗


+−≠ 





>nD 0 NNED E

D 0

σ σD D
                                           (27) 
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since it can be assumed that ( )tr > 0pM + N NE , while the tangential strain rate tD  is al-
ways induced for *t ≠ 0σD . Eq. (23) is rate-nonlinear and thus an inverse expression be-
comes rather complicated form. It should be noted that the loading criterion has to be de-
fined essentially by the sign of the proportionality factor Λ as has been revealed by Ha-
shiguchi [5], while it has been defined merely by the quantity )tr(NED  in the traditional 
elastoplastic constitutive equation and even in the past tangential-subloading surface 
model [1, 6, 7]. 

Hereafter, assume that the elastic modulus tensor E is given by Hooke’s type, i.e. 

2
3 ( ))( ijijkl kl ik jl il jkE = K G Gδ δ δ δ δ δ− + + ,                                                          (28) 

where K and G are the elastic bulk modulus and the elastic shear modulus, respectively, 
which leads to the relations   tr( ) tr( )= G∗ ∗2SET ST  and 2= = G∗ ∗ ∗I ET ET T

�
 for 

arbitrary second-order tensors S and T.  Then, Eq. (16) with Eqs. (15) and (17) is 
rewritten as 

tr( ) 2 || ||( )= p nt tt
G d

MM
∗ ∗∗+− −N nNED Eσ σ σσ

D
D DD ,                                                           (29) 

from which one has 

tr( ) 1 || ||( ) ,= 2

tr( ))tr( || ||tr tr2 ( )( )=

{ }

{ }

p

p

n

n

t t

t

t

t

dG
MM

dG
M M

∗ ∗ ∗∗ ∗ ∗

∗∗ ∗∗ ∗∗ ∗ ∗ ∗


+− − 



− − 


N nD N

Nn n nn nD N

σσ σ σ

σσ σ

D
D D

D
D

D

D
                           (30) 

Noting }tr( ) ) (= = 0* * *t ∗ ∗− n nNN N , it is obtained  from Eq. (30) that 

2=
2

t
tt t

GM
M G

∗∗
+ DσD ,                                                                                                     (31) 

where note that the deviatoric tangential-stress rate t∗σD  is simply proportional to the devia-
toric tangential-strain rate tr( ( ) )= t

∗ ∗ ∗ ∗ ∗− n nD DD . 

Substituting Eq. (31) and noting 

(tr(  ( 2 )))tr = 0=tt G ∗∗ NNE σσ DD ,                                                                           (32) 

the proportionality factor Λ  in Eq. (26) can be described in terms of strain rate as 
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2) ( )tr( tr
2=

( )trp

n tt
Gd M G

M
Λ

∗∗− +
+

nN DEDN

NEN
.                                                    (33) 

The inverse expression, i.e. the analytical expression of stress rate in terms of strain 
rate is derived as follows: 

2
2) ( )tr( tr ( )22 ( )= 2( )trp

n

n
tt

tt t

Gd M GG dM GM

∗∗
∗ ∗ ∗

− + −− +++

nN DNED
nEN DED DNEN

σD .  (34) 

The loading criterion is given as 

 
2) ( )tr( tr:  0,2

=  : otherwise

p
n

p

tt
Gd M G

∗∗ −≠ + 



>n DD 0 NED N

D 0

                                                 (35) 
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