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Strain-gradient elasticity: numerical methods, a reciprocal theorem
and a Saint-Venant type principle

A. E. Giannakopoulosl, E. Amanatidou’, N. Aravas’

Summary

Theories with intrinsic or material length scales find applications in the modeling of
size-dependent phenomena, such as the localization of plastic flow into shear bands. In
gradient-type plasticity theories, length scales are introduced through the coefficients of
spatial gradients of one or more internal variables. In elasticity, length scales enter the
constitutive equations through the elastic strain energy function, which, in this case,
depends not only on the strain tensor but also on gradients of the rotation and strain
tensors. In the present paper we focus our attention on the strain-gradient elasticity
theories developed by Mindlin and co-workers in the 1960’s. In such theories, when the
problem is formulated in term of displacements, the governing partial differential
equation is of fourth order. If traditional finite elements are used for the numerical
solution of such problems, then C' displacement continuity is required. An alternative
“mixed” finite element formulation is developed, in which the displacement and
displacement —gradients are used as independent unknowns and their relationship is
enforced in an “integral-sense”. The resulting finite elements require only C” continuity
and are simple to formulate.

Introduction

Classical (local) continuum constitutive models possess no material/intrinsic length
scale. The typical dimensions of length that appear are associated with the overall
geometry of the domain under consideration. In spite of the fact that classical theories are
quite sufficient for most applications, there is ample experimental evidence, which
indicates that, in certain applications, there is significant dependence on additional
length/scale parameters. A first attempt to incorporate length scale effects in elasticity
was made by Mindlin [4] and Koiter [3]. More recently, a variety of ‘gradient-type’
theories have been used in order to introduce material length scales into constitutive
models. In the following we summarize briefly a family of strain-gradient elasticity
theories introduced by Mindlin and co-workers [5, 6] and present a variational
formulation, which is used together with the finite element method for the numerical
solution of boundary value problems.

A review of strain-gradient elasticity theories
Let u be the displacement field. The following quantities are defined:

B 1 L _ 1 B _ .
Ej = U ) = E(ui"'j + uv/",) = strain, Q,] = u[w.] = E(ui"'j — uj",.) = =€ 0 = rotation tensor ,
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1 . .
;= —(V X u) —eully, = Ee”k Q, = rotation vector (axial vector of £2),

K‘U. =0, = rotatlon gradient , K; = 0,

Ko =Wy =Ep,; t &4 — & = Ky = second gradient of displacement,

. 1 . . .
K = E(uj"k" + uk,ji) =&y, = Ky; = strain gradient,

1 1 = . . -
ik :—( U tu, +uk7”) :g( gk T € +5k,-,,,') =K 4 =Ky, =K, =symmetric part of K, or x,

gl

where ¢, is the alternating symbol. The above quantities are related by the
following expressions (Mindlin and Eshel [5]):
k_Kk+Kk7 Kk7/_Kk+3K p]k+3K ep,k,

. 1 1_ 1_

K = (Kf/k + Klk/ ) ik ~ 3 K pChip — 3 KipCiip »
2 3 3
_ 1. = 1,. N - 1,4 N N
Ky =5 Kok ok = = K ik jpk» Kijk _g(Kv‘k K i +"sz) _E(Kz/'k K ki +Kkz‘/)‘

The alternative forms of the strain-gradient elasticity theory given by Mindlin [4] are
summarized in the following. The strain energy density W is written in three equivalent

forms: W =W (s, f():Vf/(s, f{):VI_/(a, X, E). Mindlin refers to the description
W =W (e, &) as “Type I”, to W =W (e,&) as “Type II”, and to W=W(e,%.X) as

“Type 1II”. Using the above forms of the elastic strain energy density, one defines the
following quantities:

_ oW oW oW _ oW LW,
v d¢, B ¢, B ds; ~ He = 61(1].,C = A = 0Ky ~Hig>

_ oW = _aw - =

/u// Ea /u//k - a_i]k :u//k :uik/ - :ukj/ .

Variational formulation
A given boundary value problem in strain-gradient elasticity can be formulated in any
of the three equivalent ways discussed in the previous section. Here we discuss the Type
I formulation and emphasize the calculation of true stresses and true couple stresses.
The governing equations in the volume V' of the body are:

_ 5,457, 9= 1, -
Oij = 0, 0, =0y + Oy > fulik kT 2 = CiikMpk,p >
gi]. = u(ih‘j) . a),- = _Eel]'ku],k N K’/ = a)v/»’i , K'U.k = E(gi]’k + gjk,l + gkl,j) ,
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— aW __aw = W
"o, M ok, ‘
The correspondmg boundary conditions are:

u,=u, onS,, b=n 0'>.—W%+[(Dpnp)nj —D}J(nk;:z,qi +nl.npnk,t:zkp].)=l_’,.onSp, (1)

w, =w; on S, , Qll =n ﬁlﬂ + annjnkfllgpeqpi = QI on SQ , ()
nne, =g on S, R=nn, nky,/k =Ron S,, 3)
u,=u” on C;, = [[—s A+, (,uk/, +ninpf1p/.k )]] =Eon Cy, (4)

where o] =@, —,n,n,, g" =nn i, , o=, —g,nn, ,DA=nA; D A=A, —niDA,
S,US,=8, S,US,=8, S,USy=8, C;UC;=C*, §,NS,=0, S,MNS,=

S.NS,=90, C/NCF=, and (ﬁ,(TJ',E,ﬁ“) are known functions. In the above
expressions, S is the surface of the body under consideration; when the outer surface S

is piecewise smooth, it can be divided into a finite number of smooth surfaces S“
(a :1,2,...) each bounded by an edge C“. In the above expressions, the double

brackets [[]] indicate the jump in the value of the enclosed quantity across C“, and

1 =sxn, where s is the unit vector tangent to C“. The generalized loads (P,Q’,R,E“)

are defined in equations (1)-(4) and take the prescribed values (l_),(_)t ,1_2,173“) on the

corresponding parts of the surface S .
Amanatidou and Aravas [1] have shown that the solution of the problem can be given
by the stationarity condition oIl =0 of the functional

H(u ®,8,6' ) IW( ) K((J)) ﬁ(a))dV+ J:[ui’j—(gij—eijka)k)]gi(i?)dV

- j Pv,dS - j Olw!dS - j R e,dS -3 d Efuds + j( ety 1 a)inijnpﬁpqnqu

So ¢ CE

+J.[ ) —2nnu (]~ P _(ng +2n,me,,0, n,n]npnqepq)} nrﬁ”de,

_ _ oW
where g,=¢,, K,(0)=0,. &,(g)= (5,,k TR A 6/(
- oW .
yﬁsz,5u:0 on S, and Cy, 6@ =0 on S, and nn,de; =0 on S, .

itk
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Amanatidou and Aravas [1] used the above variational principle and developed a nine-
node isoparametric plane strain finite element with 70 degrees of freedom (1119-70). The

quantities (u;,u,,@;,&1,65,26,) are used as degrees of freedom at all nodes and the
quantities (oq(lz), g),a((lzz)),a[(é)]) are additional degrees of freedom at the corner nodes. A

bi-quadratic Lagrangian interpolation for (u,u,,@,,&,€5,2&,) and a bi-linear for

(01(12),055),0((122)),0[(122)]) are used in the isoparametric plane.
A reciprocity theorem in linear strain-gradient elasticity and the corresponding
Saint-Venant-type principle
The general form of the strain energy density function for a linear material is (Mindlin [4])

1 A A .
ipa € €pg T EalkaIJ" Kijk Kpgr + Eijtpg Kk €pg »

Vf/(a,fc) =%c

where the constitutive tensors ¢, a and g have the symmetries.

CU‘M = CMU‘ = Cﬁm = Ci/’c/p 4 az‘ikpqr = apqriik = ak/"’pqr = aiiqup ’ g ihpg g ikipg g ikgp *
The corresponding &, and i, are of the form
_ oW . . oW .
0y = de = Ciipg €pq + & parij K par » Mg = oK = ijkpgr K par T ikpg € pq -
ij ijk

Giannakopoulos et al. [2] have shown that a “reciprocity” theorem exists only if

g =0, in which case
O = Ciipg Epg and Hlie = Aty K -
The corresponding type 111 form of the elastic strain energy density function is then

= _= 1 1 = 1_ I_ = _ I_
W (8’ K K) ) CupgyEpg + B R 3 K jsChas ~ 3 KsCis || Kpar ~ 3 K€ — 3 KrCpr |-

It should be noted that the condition g =0 is satisfied in the case of all linear isotropic

materials.
Giannakopoulos et al. [2] showed that the following reciprocity relationship holds

I(P,. u +0 o +R8*)dS+ZC.fE, u, ds = I(P,*u,. +0 0 + R 5)dS+

S a * S
+ZC§E,* u,ds

a e

)

where (u,s,m) and (u*,a*,m*) are elastic states corresponding to generalized loads

(P,Q',R,E“) and (P*,Q'*,R*,E“*) . Polyzos et al. [8] also proved a reciprocal identity

for a specific form of an isotropic, linear elastic solid with microstructure. It is
emphasized though that (5) is valid within a more general framework of Mindlin’s theory
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for static analysis of three-dimensional linear elastic solids that accounts for
microstructural effects with the only constraint that g, =0.

Giannakopoulos ef al. [2] used also the aforementioned reciprocity relationship a
methodology similar to that of Mises [7] and Sternberg [9] to show that, if the forces
acting on an elastic body are confined to several distinct portions of its surface S,

(k =1,2,...), each lying within a sphere of radius &, then the displacements at a fixed
interior point of the body is of order 0(52) or smaller if the resultant forces on each S,
are non-zero, O(g3 ) or smaller if the corresponding resultant forces vanish on each S,

and 0(54) or smaller if the forces are in “astatic” equilibrium (system of parallel forces

that remain in equilibrium under an arbitrary change of its direction, the magnitude and
sense of forces being maintained) on each S, .

Applications
As an example, we consider the special case where the elastic strain energy density is of

ooy G N
the form W (e,k) = 5/15”5“ + ug s, +?(/1K(”K,kk +2uKUkKUk) , where A and u are the

Lamé constants. The quantity 6, =0, =06, — f,, = 81/17/68,./. —6(6W/81€k,].)/8xk

can be written as 6,=06,-( ZVZO_',./ with G,=2pue;+1¢,0,,
where it was taken into account that K, =&, . The corresponding equivalent type 11
form is

. _= A (A3 _ _ 24 _ _ A== == 21 _ =
W(a,K,K) :Egligkk +uege; +L TK'I.].K'U. —71%.1(].1. +5Kﬁj/ck,g K K +?€iijU.Kkpp .

We consider a rectangular block of material with length 27 and height H . Figure 1
shows one half of the block. Loads are applied near point A (Fig. 1) and its symmetric
point (not shown in the figure) with respect to the x,-axis; plane strain conditions are

considered. The three loading cases P shown in Fig. 1 are analyzed.

ry ™y

H2

H2

Figure 1
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The corresponding problems are solved by using the finite element method. Half of
the block is analyzed using a 32x16 finite element mesh (element 1119-70 mentioned

above). The symmetry conditions u, (0,x,)=0 and ;(0,x,)=0 are used together with

the constraint u, (0,0) =0 that eliminates any rigid body motion in the x, -direction. The

distance e that defines the location of the applied loads near point A is equal to one
element side, i.e., e=H/16. The first type of load corresponds to non-zero resultant
force; in the second case the resultant forces vanishes on S, ; in the third case the forces

are in astatic equilibrium on each S, . The calculations are carried out for L/H =2,
L/H =0.04 and v=0.28, where v is Poisson’s ratio. We define the dimensionless
quantity v, =v, E/ (F t) , where v, is the vertical displacement of point B, £ Young’s
modulus and ¢ the out-of-plane thickness. The calculated values of v, for the three
types of loading are

W =164x10", 3P =603x102, ) =7.68x10".
Clearly, the following inequalities hold

o(iP)<o(e3). o(i)<o(?%),  s=e/H=0.0625,

thus verifying the aforementioned “Saint-Venant principle”.
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