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Summary 

 A three-dimensional boundary element method (BEM) for treating time harmonic 
problems in linear elastic materials exhibiting microstructure effects is presented. These 
microstructural effects are taken into account with the aid of the dipolar gradient elastic 
theory of Mindlin. The constitutive equations, the boundary conditions and the integral 
representation of the problem are explicitly provided. Surface quadratic quadrilateral 
boundary elements are employed and the discretization is restricted only to the boundary. 
A numerical example serves to illustrate the method and demonstrate its accuracy. 

 

Introduction 
Recent experimental observations have shown that some materials are significantly 

affected by their microstructure and exhibit a mechanical behavior which is different than 
that expected classically. These microstructural effects become more pronounced 
especially when the size of the tested specimens becomes small as well as in cases where 
generated wavelengths have the same order of magnitude with the microstructure of the 
considered materials. Due to the lack of an internal length scale parameter the classical 
theory of linear elasticity fails to describe such a behavior. There are, however, other 
generalized continuum theories where microstructural effects are taken into account and 
thus materials with microstructure can be successfully modeled in a macroscopic manner. 
Among these theories, the most general and comprehensive theory is the one due to 
Mindlin [1,2] involving 16 elastic constants while a very simple dynamic version of his 
theory is that of dipolar gradient elasticity [3]. It is called dipolar since, besides the 
classical Lame’ constants, only two new material constants are needed to describe the 
microstructural effects in the considered medium. Although, many analytical solutions of 
gradient elastic problems have been appeared to date in the literature, the solution of 
gradient elastic problems with complicated geometry and boundary conditions requires 
the use of numerical methods such as the finite element method (FEM) and the boundary 
element method (BEM). Among the efforts made for the numerical treatment of strain-
gradient elastostatic boundary value problems one can mention the two-dimensional FEM 
solutions of Shu et al. [4], Amanatidou and Aravas [5], Teneketzis Tenek and Aifantis 
[6], Chen and Wang [7] and Engel et al. [8] and the two-dimensional meshless local 
Petrov-Galerkin (MLPG) method solution of Tang et al. [9]. In the framework of the 
simple gradient elastic theories with or without surface energy, one can mention the two 
and three-dimensional BEM solutions of Tsepoura et al. [10], Polyzos et al. [11], and 
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Tsepoura et al. [12], for elastostatic problems and Tsepoura and Polyzos [13] and Polyzos 
et al. [14] for frequency domain elastodynamic problems. 

In this work the BEM, in its direct form [15], is employed for the solution of three-
dimensional elastodynamic problems in the framework of the frequency domain dipolar 
gradient theory. The present version of the implementation of the method is restricted to 
smooth boundaries and computation of boundary displacements and tractions. The 
constitutive equations, the equation of motion and the classical as well as the non-
classical boundary conditions of a dipolar gradient elastic problem are presented. The 
boundary integral representation, the numerical implementation and the solution 
procedure of the problem are described in brief. Finally, a numerical example that 
illustrates the method and demonstrate its accuracy is provided.  

Theoretical  background 

Taking into account the non-local nature of microstructural effects, Mindlin [1,2] 
considered that the density of strain density is not only a function of strains, as in the 
classical case, but also a function of the gradients of the strains. In the dipolar version of 
his theory, this is expressed as 
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where e~  and e~tr  are the classical strain tensor and its trace, respectively, ∇  
represents the gradient operator, the dot, the double dots and the column of three dots 
indicate inner product between vectors and tensors of second and third order, 
respectively, ),( µλ are the classical Lame constants and 2g  is a new material constant 
(units of 2m ) called volumetric strain gradient energy coefficient, which correlates the 
microstructure with macrostructure.  

Extending the idea of non-locality to the inertia of the continuum with 
microstructure, Mindlin proposed a new expression for the kinetic energy density 
function where the gradients of the velocities are taken into account, i.e. 
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where ρ is the mass density, u is the displacement vector, dtd /uu =& and h2 is the 
second new material constant (units of m2) called velocity gradient coefficient, which is  
always smaller than the volumetric strain gradient energy coefficient 2g . Taking the 
variation of strain and kinetic energy, according to the Hamilton’s principle, and 
considering harmonic dependence on time one concludes to the equation of motion of a 
continuum with microstructure, which in terms of displacements is written as follows:  
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accompanied by the classical boundary conditions 
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and the non-classical ones 
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where  000 ,,, qRup 0 denote prescribed values, the symbols ⊗  and S∇  indicate 
dyadic product and surface gradient, respectively, τ~ is the Cauchy stress tensor and µ~ is 
a third order tensor, called by Mindlin double stress tensor, related to τ~ through the 
constitutive relations: 

τµ ~~ 2∇= g  (6) 

[ ] ( )Iuuuτ ~   ~ ⋅∇+∇+∇= λµ  (7) 

  

Boundary integral representation of a 3-D gradient elastic problem 

As it is proved in [16], the integral representation of the problem described in the 
previous section is  
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where the vector p represents the surface traction vector given by Eq. (4), R is the 
double traction vector given in Eq. (5) and ( )yxu* ,~  is the fundamental solution of Eq. 
(3) which is given in [16] and ( )xc~  is the well-known jump tensor. All the kernels 
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appearing in the integral Eq. (8) are given explicity in [16]. Observing Eq. (8), one 
realizes that this equation contains three unknown vector fields, ( )xu  ( )xp  and 

( ) n∂∂ xu . Thus, the evaluation of the unknown fields ( )xu , p(x) and ( ) n∂∂ xu  
requires the existence of one more integral equation. This integral equation is obtained 
by applying the operator xn∂∂  on Eq. (8) and has the form 
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The kernels appearing in Eq. (9) are given explicitly in [16]. The integral Eqs (8) and 
(9) accompanied by the classical and non-classical boundary conditions form the integral 
representation of any gradient elastic boundary value problem. 

BEM solution procedure 

The goal of the Boundary Element methodology is to solve numerically the well-
posed boundary value problem constituted by the system of two integral equations (8) 
and (9) and the boundary conditions (Eqs (4) and (5)). To this end the surface S is 
discretized into E eight-noded quadrilateral and/or six-noded triangular quadratic 
continuous and discontinuous isoparametric boundary elements. Then, all the nodal 
fields of the corresponding fields are expressed to the local co-ordinate system ξ1, ξ2 
with the aid of the shape functions Nα (α = 1, 2,…A(e) and A(e)=8 or 6 for quadrilateral 
or triangular elements, respectively). Adopting a global numbering for the nodes, each 
pair (e, α) is associated to a number β and the integral eqs (8) and (9) are written as 
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(10) 

 

where L is the total number of nodes. Collocating Eqs (10) at all nodal points L and 
applying the boundary conditions (Eqs (4) and (5)) one produces the final linear system 
of algebraic equations of the form  
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BXA =⋅
~

 (11) 

 

where the vectors X and B contain all the unknown and known nodal components of 
the boundary fields.  

A numerical example 

In order to demonstrate the accuracy of the proposed here 3-D dipolar gradient 
elastic boundary element methodology, a simple example dealing with the harmonic 
excitation of a dipolar gradient elastic cylindrical bar of length L, fixed at 0=x  and 
subjected to a constant axial tensile stress 0P  acting at the end Lx = . This problem has 
been solved numerically utilizing a 3-D model. According to this model, the axial bar in 
tension is modeled by a thick solid cylinder of height L =D/4, with D being the diameter 
of the cylinder. The discretization consists of 268 quadratic quadrilateral boundary 
elements was restricted to one quarter of the cylinder because of symmetry. The problem 
has been solved for 1)2/(0 =+ µλP , and for the pairs )01.0,1.0( == hg  and 

)05.0,5.0( == hg .  The dimensionless axial displacement u, strain and traction p  
have been evaluated and displayed in Fig. 1 as functions of the distance Lx /=ξ . As it 
is evident, the obtained numerical results are in an excellent agreement with the analytical 
ones provided in [16]. 
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