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Summary 

 
In this paper , a deviatoric two-surface plasticity model with variable non-linear 
hardening modulus  is formulated. This model inherits the simplicity of classical 
bounding surface model formulated as a special case of general plasticity theory. 
The model adopts a kinematic hardening circular cone as the yield surface and 
two non-circular conical surfaces corresponding to the deviatoric stress ratios at 
peak strength and start of dilation stress ratio. The shape of the non-circular 
surfaces is formulated in accordance with the experimentally established failure 
criteria and their sizes are related to the classical definition of 3D deviatoric stress 
invariants. A parametric study is performed to check the representation of the 
nonlinearity in the model. 
 

Introduction 
 
In pressure dependent bounding surface models [1], the nonlinearity of the cyclic 
loading curves are assigned by the definition of the hardening function, which is 
formulated with the scalar quantities, derived from the deviatoric stresses. Due to 
this inherent definition[1], nonlinearity of the stress-strain curves, generated by 
the cyclic loading is also fixed for certain stress paths. In this paper, the definition 
of hardening function is changed in such a way that, any degree of nonlinear 
curve can be generated by cyclic loading. In doing so, two-surface plasticity 
model is considered as the special case of generalized plastic ity theory[2]. The 
formulation used here is basically a purely kinematically hardening model 
without any isotropic hardening. The elastic zone is a circular cone, moving 
around the outer bounding surface.  
 

Model Description 
 
The additive decomposition of total strain increment is used here as follows; 
  e p

ij ij ijd d dε ε ε= +  (1) 
Elastic part of the model is described in this subsection. As the first 
approximation, the shear modulus elastic deformations is formulated as a unique 
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function of the mean principal stress σ m, but independent of stress ratio while 
ignoring both inherent and stress-induced cross-anisotropy. The formulation 
described herein is based on the core idea that dynamic and statically determined 
values of shear modulus are essentially the same. The main formulation came 
from the work of Iwasaki el al.[4], in which a formulation of  dynamic shear 
modulus was given based on the results of resonant column tests as follows, 
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where G0 is a constant to be determined from relevant experimental result, e is 
void ratio, m is an exponent to be determined, which is 0.4 for Toyoura sand 
(Iwasaki et al.,[4]) and σm is the mean stress (= σ 1 + σ 2 + σ 3  )/3. A total bulk 
modulus was formulated with a non-linear equation, which is similar to the 
equation of shear modulus, as follows, 

 
( ) ( )K K

e

e
t

m
m=

−

+









0

22 17

1

.
σ  (3) 

The reason of formulating a total bulk modulus is the inability of a single yield 
model (a stress-dilatancy relation for shearing only) to capture the plastic 
volumetric strain characteristics for a wide range of stress path. By this way, the 
plastic volumetric strain can be captured to a significant proportion as shown in 
[3].  
 
The plastic part of this model consists of a yield function, bounding and dilatancy 
surface, flow rule and a hardening law. There are some changes in the definition 
of bounding, dilatancy surfaces compared to the ref.1. These are shown in 
subsequent sections. 
 
The yield function is of kinematic type. So it is a circular cone in the stress space 
with its apex at the origin, given by the equation 
 

 ( )1 2[( ) : ( )] 2 / 3ij ij ij ijf s p s p mpα α= − − −                           (4) 

 
where the back-stress ratio deviatoric tensor α ij determines the position of the 
axis of the cone and the stress ratio scalar variable ‘m’ the ‘size’ of the cone. It is 
noteworthy that the evolution of α ij and ‘m’ controls the kinematic and isotropic 
hardening respectively. In this research purely kinematic hardening is considered.  
Bounding and dilatancy surfaces will be similar in shape but sizes will differ. In 
this paper, generalized Mohr-Coulomb failure criterion in the invariant space is 
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chosen for both bounding and dilatancy surfaces.  The bounding/dilatancy surface 
in 3D stress-space can be written as; 

  
( ), 1 2

1
0

,b df I J
g c

η
θ

= + =  (5) 

where  I1=first stress-invariant,  J2= second invariant of deviatoric stress,   f=yield 
function,   η = deviatoric stress on the π -plane at Lode angle 00θ =  depends 

on the angle of friction (for bounding function), and ( ),g cθ = Lode angle (θ ) 
function.  
Now, from the above equation, non-dimensional form of bounding/dilatancy size 
can be determined as follows: 
 

 ( ) ( )2 2; ;b d
b d

i i

J J
g g

I Iθ θα η θ α η θ= = = =   (6) 

where b
θα and d

θα are the coefficient of the bounding/dilatancy surfaces,  bη and 

dη   are controlling the size of the above described bounding and dilatancy 
functions, which are described as follows: 
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( ),g cθ  is defined as follows: 
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Here, in this research, a non-associated flow rule is used in order to accommodate 
the dilating behaviour of dense sand. It is noteworthy to say that a non-associated 
flow rule does not violate the Drucker’s stability postulate in incremental sense. 
So, unique solutions were obtained with this formulation. 
 
The definition of the kinematic hardening law is the core of the two-surface 
model. It is assumed here that ijα&  is directed towards the bounding image stress 

ratio, b
θα , defined by equation (6) and that it depends on the 

distance ( )b

ij ij ijb
θ

α α= − . So the following equation can be written 

 

 ( )b

ij ij ijL h
θ

α α α=< > −&  (9) 
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where ‘h’ is a positive scalar valued hardening function. A form of ‘h’ which is 
used in many bounding/two-surface models is given by- 

 0
ij ij

ref ij ij

b n
h h

b b n
=

−
 (10) 

where h0 is a positive constant and ( )2 / 3 b b
refb θ θ πα α += + a reference distance 

> ij ijb n . 

In this paper, the definition of ‘h’ is modified to the following function : 
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where 
0ij ijb n  is the distance to the image stress on the bounding surface at the 

start of loading or unloading. κ is the effective plastic strain increasing 
monotonically with loading or unloading, initialized to zero at the start of each 
loading or unloading. The function’s nonlinearity can be modified by changing 
the value of the exponent m and the constant fε . The function has some 

essential property like, when fκ ε= , 0.0h = . 
 

Parametric Study 
 
A parametric study is carried out to see the capability of this model in capturing 
the essential features  of cyclic  loading for 0 050 , 44peak resϕ ϕ= = . In this paper, 

two cases are studied. First case is 0.8m =  , 0.1fκ =  and the second case is 

0.2m =  , 0.1fκ = . It has been found that the results are much encouraging for 
further study in this field. A 10 cm x 10 cm element is taken used with a 100 kPa 
confining stress and loaded by vertical displacement only (Fig. 1). 
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Fig.1 Applied displacement loading on the top nodes of the single element 
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Results and Discussion 
 

Figs. 2 and 3 show the stress ratio vs. shear strain of the cyclic loading simulation 
for the first and second cases respectively. From the figures, the effect of change 
in the nonlinearity of the backbone and the reloading curves are very clear. 
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Fig. 2 Stress ratio versus shear strain 
for the first case ( 0.8, 0.1fm κ= = ) 

Fig. 3 Stress ratio versus shear strain 
for the first case ( 0.2, 0.1fm κ= = ) 

Fig. 4 ( )sin ϕ versus shear strain for 

the first case ( 0.8, 0.1fm κ= = ) 
Fig. 5 ( )sin ϕ versus shear strain for 

the first case ( 0.2, 0.1fm κ= = ) 
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Figs. 4 and 5 show the ( )sin ϕ  vs. shear strain of the cyclic loading simulation 
for the first and second cases respectively. From the figures, the effect of change 
in the nonlinearity of the backbone, the unloading and reloading curves are very 
clear. Figs.6 and 7 show the volumetric strain vs. shear strain of the cyclic 
loading simulation for the first and second cases respectively. The effect of 
change in the nonlinearity is very clear in these figures. 

 
Conclusion  

 
In this paper, a variable nonlinearity based hardening modulus is included in the 
classical two-surface model. It has been showed that the new approach enhances 
the nonlinear behaviour of the virgin, unloading and reloading curves very much.  
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Fig. 6 Volumetric strain versus shear strain 
for the first case ( 0.8, 0.1fm κ= = ) 

Fig. 7 Volumetric strain versus 
shear strain for the first case 
( 0.2, 0.1fm κ= = ) 
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