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Summary 

The traditional elastoplastic constitutive equation is incapable of describing the 
inelastic stretching due to the stress rate tangential to the yield surface. The subloading 
surface model has been extended so as to describe the inelastic stretching due to the 
deviatoric tangential stress rate for the subloading surface. In this article, the subloading 
surface model is applied to the prediction of the deformation behavior of sands subjected 
to the cyclic loading of circular stress path in the deviatoric stress plane deviating 
significantly from the proportional loading. The validity is verified comparing with the 
test data.  

Introduction 

In the traditional elastoplastic constitutive equation, the plastic stretching is 
independent of the stress rate component tangential to the yield surface, while let the 
component be called the tangential stress rate. Therefore, the traditional formulation 
possesses the following defects: 1) Unrealistically stiff response is predicted for the 
plastic instability phenomena in which the stress path deviates from the proportional 
loading and thus the tangential stress rate has a significant magnitude. 2) The direction of 
the plastic stretching is independent of the stress rate. 3) The coaxiality, i.e. the principal 
axes of plastic stretching coincide with those of stress as far as an anisotropic plastic 
potential surface is not incorporated. 

The subloading surface model [1] fulfills the mechanical requirements for constitutive 
equations, i.e. the Masing effect and the work rate-stiffness relaxation. It has been 
extended so as to describe the inelastic stretching due to the deviatoric tangential stress 
rate for the subloading surface, called the tangential stress rate effect [2]. It would be 
able to overcome the above-mentioned defects in the traditional elastoplastic constitutive 
equation. 

In this article, in order to examine the validity of the subloading surface model with 
tangential stress rate effect, the simulation results are compared with the test data for the 
deformation behavior of sands subjected to the cyclic loading of circular stress path in the 
deviatoric stress plane deviating significantly from the proportional loading. The tensile 
stress ( rate ) and stretching ( a symmetric component of velocity gradient ) are taken to 
be positive throughout this article. 
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Outline of the Subloading Surface Model with Tangential Stress Rate Effect 

Let the stretching D  be additively decomposed into the elastic stretching eD  and the 
inelastic stretching iD  which is further decomposed into the plastic stretching pD  and 
the tangential stretching tD , i.e. 

1, , .e i i p t e −=D = D + D D = D + D D E σo      (1)  

σ  is the Cauchy stress and ( )o  indicates the proper corotational rate with the objectivity 
and the fourth-order tensor E  is the elastic modulus.  

Now, let the subloading surface [1, 3] be introduced, which always passes through the 
current stress σ  and keeps the similarity to the normal-yield surface. The subloading 
surface is given by 

( , ) ( ),f RF H=Hσ   , ( )R= − = − −α α s s ασ σ , (2) 

where the second-order tensor H  and the scalar H  are anisotropic and isotropic 
hardening variables, respectively. The second-order tensor α  is the reference point inside 
the normal-yield surface, which plays the role of the kinematic hardening variable as it 
translates with the plastic deformation. α  in the subloading surface is the conjugate point 
of α . ( 0 1 )R R≤ ≤  is the ratio of size of the subloading surface to that of the normal-
yield surface. s  is the similarity-center of these surfaces. The translation rule of the 
similarity-center s  is given by 

ˆ1 ( , ) ˆ|| || tr ,p
s

fc F
R F

  ∂ = + + −  ∂   

s Hs D H s
H

g% ooo σ
α   ˆ, .= − ≡ −s s s ασ σ%    (3) 

where sc  is a material constant prescribing the translating rate of the similarity-center. 
 stands for the magnitude. 

  The evolution rule of R  is given by 

|| || for 0,p pR U= ≠D D
g

  ln ,U u R= −  (4) 

where  ( 0)u > is a material constant. 

On the other hand, tD in Eq. (1) is induced by the stress rate component tangential to 
the subloading surface. Thus, tD  is called the tangential stretching. Let the tangential 
stretching tD  be formulated as 

1 ,t *tT
=D σo   .bT =

R
ξ

  (5) 

The function T  is called the tangential inelastic modulus, where ( 1)b ≥  is a material 
constant, ξ  is the material function of stress and internal variables in general. The 
second-order tensor *tσ

o , called the deviatoric-tangential stress rate, is given as follows: 
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   (6) 

( )∗  stands for the deviatoric part.  

Adopt the associated flow rule 

=p λD N ,   ( , ) ( , )f f∂ ∂
≡

∂ ∂
H HN σ σ

σ σ ,                                                                   (7) 

where λ is the positive proportionality factor.  

The stretching D  is given from Eqs. (1) and (7) as 

-1 ( ) *t

p

tr
M T

+
ND = E N +σ σσ

o o
o ,                                                                                        (8) 

where  

    
( ,  )1tr t r[ ( { ( ) } )]p

f UFM h RFF R
∂′≡ + − +

∂
HN a h

H
σ σ  ,                               (9) 

ˆ, , (1 ) ,

ˆ1 ( , ) ˆ, tr

Hh R R U

fc F h
R F

λ λ λ

λ λ

≡ ≡ ≡ = + −

 ∂  ′≡ ≡ = + + −  ∂  

H αh a a z - s

α s σ s Ha z a h s
H

og o
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The loading criterion is given as follows: 

0 : tr( ) 0,

0 : tr( ) 0.

p

p

≠ > 


= ≤ 

D NED

D NED
                                                                                                (10) 

 

Material Function for Soils 

Let the stress function ( , )f Hσ  for soils be given as  
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  2 1 tr , , , ,( , ) (1 ), 3pf p pmχχ
∗

≡ − ≡ ≡ − ≡= + Q QH σσσ η η β  (11) 

3

3
14 6 sin tr, , sin 3 6 ,

(3 sin )(8 sin 3 )
p m η

η

φ θ
φ θ

∗ = + = ≡ −
− −

Iσ σ η

η
        (12) 

where φ  is the material constant. The anisotropic hardening variable H  is selected as the 
rotational hardening variable β . The evolution rule of rotational hardening is given by 

,p
r bb ∗= Dβ η η

o
  14 6 sin, , ,

(3 sin )(8 sin3 )
b

b b b
b

m m
η

φ
φ θ

≡ − ≡ =
− −

t t η
η β

η
 (13) 

where rb  and bφ  are material constants. The isotropic hardening/softening variable H  
for sands as follows: 

( ),p p
v dH D mµ ∗= − + −D

g
η  

3

3
14 6 sin tr, sin 3 6 ,

(3 sin )(8 sin3 ) || ||
d

d
d

m σ
σ

φ
θ

φ θ

∗

∗
= ≡ −

− −
σ
σ

 (14) 

where µ  and dφ  are material constants. The isotropic hardening function F  is given by  

( )0 exp{ }F F H ρ γ= − .           (15) 

0F  is initial value of F  and ρ  and γ  are material constants. The function ξ  in the 
tangential inelastic modulus T  of Eq. (5) is given by  

= c
p

aξ
χ

    (16) 

a  and  ( 1)c ≥  are material constants. 

 

Simulation and Discussions 

The validity of the above-mentioned constitutive equation is examined by the 
simulation for the test data of Hostun sand under the drained condition [4]. The 
coordinate system (x1, x2, x3,) is taken for the true triaxial test apparatus as shown in Fig.1 
where 1 2 3, ,σ σ σ  are principal stresses, 1 2 3, ,ε ε ε  are calculated by the time integration of 
the three principal stretching 1 2 3, ,D D D . 
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Fig.1.  Coordinate system for the true triaxial test apparatus.
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This test is split into two stages: I) The axial stress 3σ  was decreased by –343 to          

–843kPa from the isotropic stress state of –500kPa, while 1σ  and 2σ  were both increased 
proportionately by 171 to –329kPa, keeping the mean stress σm at –500kPa. The 
magnitude of deviatoric stress || ||∗σ  finally became 420kPa. II) A circular stress path 
( σθ  =30→750°) in two cycles was traced in a deviatoric stress plane by varying three 
principal stresses 1 2 3, ,σ σ σ  in sinusoidal forms, mσ  and || ||∗σ  being kept to be constant. 
The following initial values and material constants are used in the calculation. 

0 0 0100 kPa, 540 kPa, 7 kPa, 27.7° 0.007, 0.003,
20, 0.3, 5, 25°, 95, 32°, 0.9, 0.009, 2.2, 1b ds

F
u c br a b c

φ ρ γ
ν φ φ µ

= − = = = = =
= = = = = = = = = =

σ I s
 

The predicted and tested principal strains 1 2 3, ,ε ε ε  and the volumetric strain εv  vs. the 
angle σθ  are shown in Fig. 2. Variations of principal and volumetric strains are predicted 
well in both the first ( σθ =30→390°)  and second ( σθ =390→750°) circular stress path. 

1 2 3 σε ε ε ε θ
π

Fig. 2.  Variations of three principal strain  and volumetric strain  vs.  for
the cyclic loading of circular stress path in the - plane.
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The strain paths in the π−plane calculated by the elastic, plastic and tangential 
stretching are shown in Fig. 3. The direction of the elastic stretching coincides with the 
stress rate and then the strain path exhibits the circular shape. The strain path due to the 
plastic stretching exhibits the shape of two triangles such that the subloading surface in 
the π-plane rotated π/2 in the clockwise rotation because the plastic stretching occurs 
perpendicular to the subloading surface according to the associated flow rule. The 
direction of the tangent stretching is induced by the deviatoric stress rate tangential to the 
subloading surface and then the strain path exhibits the similar shape of the subloading 
surface in the π-plane. It is also observed in the figure that the tangential stretching is 
induced always depending on the normal-yield ratio R. 

 The predicted strain path in the π-plane is shown in Fig.4 comparing with the test 
result. It is observed that the simulation is improved by incorporating the tangential 
stretching tD . Thus, the subloading surface model with the tangential stress rate effect 
can describe realistically the deformation behavior of the soil in a loading process 
deviating significantly from the proportional loading. 
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Fig. 3.  Elastic, plastic and tagential strain paths

in the - plane.
πFig. 4.  Strain path in the - plane.
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