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Summary 

A Boundary Element Method (BEM) for analysis of plane steady-state heat transfer 
problems in generally anisotropic solids which are in perfect or imperfect contact is 
developed. Thermal conductivities in each solid are considered to be constant or 
exponentially graded in a fixed but arbitrary direction. Contact conditions are applied in 
weak form, which permits an easy coupling of non-conforming meshes at contact zones. 
Numerical results presented demonstrate the applicability of the computational code 
developed for the analysis of thermal barrier coatings fabricated with isotropic or 
anisotropic Functionally Graded Materials (FGM). 

Introduction 

FGM represent a new generation of composites with spatial variation of composition 
and consequently also of materials properties. They are used in many areas [1] and in 
particular in high-temperature turbine engines as thermal barrier coatings of metallic 
turbine blades made out of single-crystal superalloys. The advantage of FGM thermal 
barrier coatings is that they release stresses by gradually changing the properties through 
their thickness in such a way that they are similar to the metallic substrate at their 
interface and similar to the pure ceramic at the external surface. The anisotropic nature of 
the single crystal blade subjected to a thermo-elastic loading may have a substantial 
influence in the heat flux and the stresses generated within the blade. 

Computational analysis of FGM, in particular in design optimisation and assessment 
of crack initiation and propagation, is of major importance for their development and 
applications, due to the fact that their manufacturing and experimental testing are 
complex. For the analysis required by FGM the Boundary Element Method (BEM) [2] 
has significant advantages versus the Finite Element Method (FEM) [3] due to its 
inherent feature of providing accurate results in analysis of problems with presence of 
cracks, interface cracks, notches, corners and contact zones. All this makes BEM 
particularly suitable for the study of failure in FGM thermal barrier coatings. 

A general 2D BEM code for a numerical analysis of steady-state heat transfer in 
solids composed by several materials in a perfect (with zero resistance to heat flow) or 
imperfect (with some finite resistance to heat flow) contact has been developed. Contact 
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conditions are imposed using a weak formulation [4,5], which is very advantageous when 
using non-conforming meshes with non-matching nodes at contact zones. Note that non-
conforming meshes are useful in case of: a) strongly non-conforming contact surfaces, b) 
application of adaptive methods on some subdomains, c) independently generated 
meshes, d) coupling of BEM meshes with boundary elements of different kind. Materials 
analysed by the present BEM code can be isotropic or anisotropic and homogeneous or 
exponentially graded in any fixed direction. Fundamental solutions (and their derivatives) 
for these materials applied in the code have been developed in [6,7,8]. 

As an example of the possible applications of the BEM code developed a problem of 
a homogeneous substrate protected by an FGM thermal barrier coating from a high 
temperature in presence of a debonding modelled like an interface crack is solved. Two 
cases, with isotropic and anisotropic materials considered for the substrate and coating, 
have been solved.  

Heat Transfer Problem for FGM 

Consider a plane exponentially-graded anisotropic solid D  with a piecewise smooth 
boundary D. . Let the thermal conductivities of D  be expressed as:  

 
{ } ,2,1,,),(2exp)( 21 =.=•= jiDxxKk ijij xxβx             (1) 

 
where the constant vector ),( 21 ⇓⇓=β  represents the direction and magnitude of 
variation. Vector β  can be real or pure imaginary. Matrix K  is symmetric and positive 
definite ( ijij KK δ=  for isotropic materials). The normal heat flux associated to the unit 

outward normal vector )(xn  at D..x  is given as )()()()( , xxxx jiji Tknq −=  where )(xT  
represents the solid temperature. Then, the Fourier law can be expressed, in terms of 
temperature, as: 

 

( ) { } )(2exp)(2)( ,, xxβxx QTKTK jijiijij =•+− ⇓             (2) 
 

where )(xQ  represents the volumetric heat generation. Let the boundary be partitioned as 
follows: icpcRqT DDDDDD .........=. , boundary conditions being then defined 

as: TDTT .= in , qDqq .= in , RT DqRTT .=− in0 , where T  and q  respectively are 

the prescribed temperature and normal heat flux, 0T  is the environmental temperature 
and TR  is the convection resistance which can be a function of the point. Thermal 
contact conditions between two solids (A and B) are expressed as follows: ,0=+ BA qq  

pc
BA DTT .=− in0 ; ic

A
T

BABA DqRTTqq .=−=+ in,0 ; where pcD.  and icD.  
are respectively the zones of perfect and imperfect thermal contact. 

Advances in Computational & Experimental Engineering & Science
Copyright 2004 Tech Science Press

249

Proceedings of the International Conference on
Computational & Experimental Engineering & Science

26-29 July, 2004, Madeira, Portugal



BEM for FGM 

The fundamental solution of equation (2) has recently been obtained in [8]: 
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where Kββ •=. , rKr 1−•=R  with yxr −= , and 0K  is the modified Bessel 
function of the zero order. The normal heat flux, through a plane defined by the unit 
normal vector )(xnn = , associated to ),( yxG  can be expressed according to [8] as:  
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where 1K  is the modified Bessel function of the first order. 

The Boundary Integral Equation (BIE) of an FGM solid can be obtained, in terms of 
),( yxG  and ,),( xG ... yx  in a similar way as for a homogeneous anisotropic solid with 

constant thermal conductivities, which corresponds to the particular case of β =0 [6]. In 
the case with no heat sources within the volume, this BIE writes as: 
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where 1)( =yKc  if D.y , 5.0)( =yKc  if y  is a smooth point on the boundary D. , and 
in the case of a corner point [6]: 
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where )2(
1

)1(
2

)2(
2

)1(
1

)2()1( nnnn −=. nn  and )1(n  and )2(n  are the unit outwards normal 
vectors to D.  at .y  

BIE (5) is solved by the BEM implemented following the general procedures 
described in [2] using linear continuous elements. The integrals are computed 
numerically over the elements not including the collocation point D..y . A 
semianalytical approach has been developed for calculation of the integrals over the 
elements including the collocation point.  
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Numerical Example 

BEM solution of a problem of a homogeneous substrate protected by an FGM 
coating from a high temperature in presence of a debonding modelled like an interface 
crack (Fig. 1) is presented. Two cases have been solved: a) an isotropic substrate (with 
thermal conductivity K=25.51Wm-1K-1) with an isotropic coating (with thermal 
conductivity varying between that of the substrate and 2.09Wm-1K-1), and b) an 
anisotropic substrate (with K11=51.02, K22=25.51 and K12=0Wm-1K-1) with an FGM 
coating (with thermal conductivity varying exponentially between that of the substrate 
and K11=4.18, K22=2.09 and K12=0Wm-1K-1). Thermal resistances at the top and bottom 
surfaces respectively are RT=5x10-4W-1m2K and RT=10-4W-1m2K for both cases. Although 
the BEM code developed can model a finite thermal resistance with a spatial variation 
along the crack, the results presented correspond to an infinite thermal resistance there.  
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Figure 1: Substrate-FGM coating configuration. 

Solutions for T along the lateral surfaces are shown in Fig. 2. At the right-hand side 
the crack originates a discontinuity in T with a null slope at the crack in accordance with 
the boundary condition of perfect isolation. Along the left-hand side, far enough from the 
crack influence, the temperature is approximately linear in the substrate and exponential 
in the FGM coating and coincident in both cases. This behaviour corresponds to the 1D 
solution without crack, where the difference in conductivity in the horizontal direction 
has no influence on the problem solution. Fig. 3 shows the effect of the crack on the 
temperature variation along the horizontal surfaces. This variation along the crack agrees 
with the characteristic exponent of the first term of the asymptotic expansion of T at the 
crack tip, which is equal to 0.5 for both problems (with isotropic and anisotropic 
materials) [9]. The increments of temperature along the top surface are about 260°C and 
170ºC respectively for the isotropic and anisotropic materials, maximum temperature 
values 1370°C and 1282°C respectively being achieved at points placed above the crack. 
As could be expected, a decrease in the temperature jump at the interface crack in the 
anisotropic case (400ºC) in comparison with the isotropic case (580ºC) can be observed. 
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Figure 2. Temperature along lateral surfaces. 
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Figure 3. Temperature along horizontal surfaces. 
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Conclusions 

A BEM code for solving plane steady-state heat transfer problems in solids 
composed by several isotropic and anisotropic materials whose thermal conductivities are 
constant or exponentially graded in any fixed direction has been developed. Numerical 
results obtained show that it can be useful in the study of FGM thermal barrier coatings, 
in particular in presence of defects like debonding, where these defects originate a strong 
perturbation of the heat flux in their neighbourhood.  
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