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Summary 

Surface waves generated by sub-surface time-harmonic point-loads in a 
transversely isotropic elastic half-space are considered.  The numerical results 
computed are compared with the Green’s function solutions obtained previously. 

Introduction 

Point-load problems are usually solved by an application of integral trans-
form techniques, and an evaluation of the related inverse transforms by contour 
integration and residue calculus.  However, the resulting integrals in general are 
not easy to evaluate analytically.  Recently elastodynamic reciprocity has been 
used to study time-harmonic point-loads in an isotropic elastic half-space [1, 2].   

This paper extends the use of elastodynamic reciprocity in [1, 2] to a trans-
versely isotropic half-space, using the same techniques.  However, as mentioned 
in [1, 2] the calculation does not include a consideration of the body waves gen-
erated by the point-loads.  The numerical results has been compared with the 
Green’s function solutions [3], and when the material is reduced to the isotropic 
elastic case, the solutions of [1, 2] are recovered. 
 

Basic Equations 

The homogeneous transversely isotropic elastic half-space and the Cartesian 
coordinate system 1 2 3Ox x x  are shown in Fig. 1.  The 1 2x x - plane coincides with 
the surface of the half-space and the 3x -axis is perpendicular to the plane of isot-
ropy.  In Fig. 1, the time harmonic point-load F  has a vertical component P  and 
a horizontal component Q . 

 Considering the formulation of [4], solutions for displacement components 
are taken as, 

1 2
3

( , )1( , ) ( ) i tx xu t V x e
k x

ω
α

α

ϕ∂
=

∂
x ,   3 3 1 2( , ) ( ) ( , ) ,i tu t W x x x e ωϕ=x   (1) 

where 1, 2α =  and / .k cω=   In the following analysis, the factor i te ω is omitted, 
and Greek indices refer to 1 2, .x x   Solutions of the form given by Eq. (1) satisfy  
.  
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the elastodynamic equations of motion, if the dimensionless function 1 2( , )x xϕ is 
taken as the solution of  

2
1 2 , 1 2( , ) ( , ) 0,x x k x xααϕ ϕ+ =       (2) 

where repeated indices indicate summation, and 3( )V x and 3( )W x are solutions 
of the following system of ordinary differential equations, 

 
2 2

44 3 11 3 13 44 3
2 2

33 3 44 3 13 44 3

( ) ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) ( ) 0.

C V x k C V x k C C W x

C W x k C W x k C C V x

ρω

ρω

′′ ′− − + + =

′′ ′− − − + =
 (3) 

Here, ijC are the elastic constants of transversely isotropic medium, ρ is the 
mass density and prime indicates 3d dx . 

For the elastic half-space 3 0x ≥ , solutions of Eq. (3) that decay exponen-
tially with the depth can be written as 

   1 3 2 3 1 3 2 3
3 0 0 3 1 0 2 0( ) , ( ) ,ks x ks x ks x ks xV x A e B e W x m A e m B e− − − −= + = +    (4) 

where 0 0,A B  are constants of length dimension and 

 1
2

2 2
11 44 13 44

2 2 2
1 2 3 3 33 44 1 2 33 44

/ , [ ] [ ( )],

, [ ( 4 ) ] [2 ],

k c m c C s C s C C

s s R R C C R R C C
α α αω ρ= = − + +

= − ± −
    (5) 

in which  

 2 2 2
1 11 2 44 3 13 44 1 33 2 44, , ( ) .R c C R c C R C C R C R Cρ ρ= − = − = + + +  (6) 

From Eq. (4) the solutions which satisfy the traction free conditions at 3 0x =  
plane, can be written as, 

Fig. 1.  Transversely isotropic elastic half-space subjected to a subsurface 
time-harmonic point-load. 
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  1 2
1 1 1 11 3 2 3 1 3 2 3

2 2 2 23 0 3 0( ) [ ], ( ) [ ],R R R Rk s x k s x k s x k s xm ms m s m
s m s mV x A e e W x A e e− − − −− −
− −= − = −    (7) 

where Rc  is the surface wave speed calculated from 

 2 2
1 1 2 33 1 13[ ] 0.Rc R s s C R Cρ − + =  (8) 

 

Surface Wave Motion Generated by P  

Equation (1) can be rewritten in the cylindrical coordinate system ( , , )r zθ  as 

1 ( , )( , ) ( ) ,r
R

ru r z V z
k r

ϕ θ∂
=

∂
       ( , ) ( ) ( , ),zu r z W z rϕ θ=  (9) 

and Eq. (2) becomes 
2

2
2

( ) 1 ( ) ( ) 0.R
r r k r

r rr
ϕ ϕ ϕ∂ ∂

+ + =
∂∂

      (10) 

For this axially symmetric case, the relevant solution of Eq. (10) for an outgoing 
wave is then a Hankel function, 

 (2)
0( ) ( ).Rr H k rϕ =   (11) 

Then Eq. (9) is simplified to 
(2)

0 1( , ) ( ) ( ) ,r Ru r z A V z H k r= −          (2)
0 0( , ) ( ) ( ),z Ru r z A W z H k r=   (12) 

where 0 ( ) ( )A V z V z=  and 0 ( ) ( ).A W z W z=  Expressions for the corresponding 
stresses can be obtained from Hooke’s law as 
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σ

σ

σ

′= − +

′= − −

′= − − −

 (13) 

Use of Elastodynamic Reciprocity 

 Considering two distinct time-harmonic states of the same frequency denoted 
by the superscripts A and B, the reciprocity relation is given by 

 ( ) ( ) ,A B B A A B B A
i i i i i ij i ij jV S

f u f u dV u u n dSσ σ− = −∫ ∫  (14) 

where ,A B
i if f  are body forces, ,A B

ij ijσ σ  are stresses and ,A B
i iu u  are displace-

ments, and jn are the components of the outward normal.  Here repeated indices 
imply summation.  For ,V the regions are defined by 0 ,r a≤ ≤ 0 ,z≤ < ∞   
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0 2θ π≤ ≤ .  For state A, actual displacements and stresses are given by Eqs. (12) 
and (13), while for state B, dummy solutions consisting of the sum of an outgoing 
wave and a converging wave are selected as follows [2], 

(1) (2)
1 1

(1) (2)
0 0

( , ) ( )[ ( ) ( )] 2,

( , ) ( )[ ( ) ( )] 2.

B
r R R
B
z R R

u r z V z H k r H k r

u r z W z H k r H k r

= − +

= +
           (15) 

Since the displacements defined by Eq. (15) is bounded at 0r = , it can be veri-
fied that the left-hand side of Eq. (14) becomes 

0 0(0, ) ( )B
zP u z PW z= ,          (16) 

where the force P is applied at 0z z= . Hence, Eq. (14) is expressed as follows 

   ( ) ( ) ( )2

0 0 0
( ) .A B B A A B B A A B B A

r rr r rr z rz z rz r rPW z a u u u u u u d dz
π

θ θ θ θσ σ σ σ σ σ θ
∞
 = − + − + − ∫ ∫  

 (17) 

Substitution of the corresponding expressions for displacements and stresses for 
state A and B into Eq. (17) yields 

 (2) (1) (2) (1)
0 0 0 1 1 0( ) ( ) ( ) ( ) ( ) ,R R R RPW z aA I H k a H k a H k a H k aπ  = − −            (18) 

where I is defined as  

    { }11 13 440
[ ( ) ( )] ( ) [ ( ) ( )] ( ) ,R RI C k V z C W z V z C V z k W z W z dz

∞
′ ′= − + − +∫     (19) 

and Eq. (18) can be rewritten as 

0 0( ) 4 / .RPW z A i I k= −             (20) 

By using Eqs. (12) and (20), the displacement components at position ( , )r z  are 
obtained as 

 
(2)

0 1
(2)

0 0

( , ) ( ) ( ) ( ) (4 ),

( , ) ( ) ( ) ( ) (4 ).
r R R

z R R

u r z i k PW z V z H k r I

u r z i k PW z W z H k r I

= −

=
 (21) 

In a similar manner, surface wave displacements due to the horizontal compo-
nent Q are obtained as 

 

(2) 1 (2)
0 0 1

(2)
0 1

(2)
0 1

( , , ) ( ) ( )[ ( ) ( ) ( )]cos /(4 ),

( , , ) ( ) ( ) ( )cos /(4 ),

( , , ) ( ) ( ) ( )sin /(4 ).

r R R R R

z R R

R

u r z ik QV z V z H k r k r H k r I

u r z ik QV z W z H k r I

u r z iQV z V z H k r rIθ

θ θ

θ θ

θ θ

−= −

=

= −

 (22) 
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Numerical Results 

 The elastic constants of transversely isotropic and isotropic materials used in 
[3] are given in Table 1. 

Table 1 Elastic constants of materials. 

            Materials 
11C  12C  13C  33C  24

44 10 /( )N mmC ×  

Isotropic ( 0.25ν = ) 3.0 1.0 1.0 3.0 1.0 
Beryl rock 4.13 1.47 1.01 3.62 1.0 
Graphite/epoxy composite 2.024 0.683 0.073 21.17 0.41 

note: 44/ij ijC C C=  

The results of the present study for a vertical load P  are compared with the 
Green’s function solutions of [3].  For a prescribed frequency 0 44/z Cω ω ρ=  

1.0,=  the non-dimensional vertical displacement along the free surface, 
44 0( ,0) ( ,0) /z zu r u r C z P=  and the non-dimensional normal stress at 0z z= , 

2
0 0 0( , ) ( , ) /zz zzr z r z z Pσ σ=  are plotted in Figs. 2 and 3, respectively.  It can be 

seen in Figs. 2 and 3 that when 0/ 0r z →  the real parts of the displacements and 
stresses of the present study, are infinite while the imaginary parts are finite.  
Since the point load P is applied below the surface at 0 ,z z=  the displacement 
should be bounded at the free surface when 0/ 0.r z →   But when 0/ 0r z →  the 
real part of the displacement Re[ ( ,0)]zu r are unbounded in the present study 
(Fig. 2).  This may be due to the fact that only surface waves are considered in 
this solution.  When 0/ 0r z ?  the present solution agrees well with Ref. [3]. 

 

 

 

 

 

 

 
  Fig. 2.  Displacement in z-direction; lines - present study, symbols - Ref. [3]. 
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Conclusions 

 Generally, it is well known that the surface wave dominates wave fields far 
from the applied load. Figures 2 and 3 show that as the radial distance increases, 
the present solution agrees well with the Green’s function solution [3].  Therefore 
the accuracy of expressions for surface wave displacements is confirmed. 
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Fig. 3.  Normal stress 0( , );zz r zσ  lines - present study, symbols - Ref. [3]. 
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