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Summary

Generalized stability analysis of the discrete spectrum optimal dynamics is presented
and rationalized in terms of the interaction between two Counter Propagating Rossby
Waves (CRWs), for conservative plane parallel shear flow. The singular vector decom-
position which yields the optimal evolution is obtained in terms of the CRW interaction
coefficient and their intrinsic phase speeds. The analysis is exemplified, for simplicity, on
the Rayleigh model.

Introduction

The concept of Counter–Propagating Rossby Waves (CRWs) has been developed by
[1] to explain normal mode instability in a two layers baroclinic model. [1] explained the
instability in terms of two edge waves which propagate counter the mean zonal velocity via
the Rossby wave mechanism of propagation. Each wave by itself is neutral, however the
waves interact by inducing meridional velocity which advects the mean potential vorticity
(PV) on the opposed CRW layer. According to the phase difference between the two CRWs
the waves affect each other’s propagation speed and growth. Normal mode instability is
then achieved when the two CRWs are phase locked to propagate together in a growing
configuration.

[2] generalized the CRW description in order to be applied on a general plane parallel
shear flow which is linearly unstable and conserves PV. [2] showed that the generalized
CRW equations become the Hamilton equations where the Hamiltonian, generalized mo-
menta and coordinates are the eddy pseudo–energy, the CRW pseudo–momenta and phases,
respectively. The generalization also rationalized the necessary condition for instability of
Rayleigh [3] and Fjørtoft [4].

On a different path, [5] investigated the optimal non normal growth of eddies in both
baroclinic and barotropic shear flows and developed the generalized stability theory (GST)
of linear dynamical systems. [6] showed how a Singular Value Decomposition (SVD) of the
propagator matrix of the dynamical system provides the optimal evolution which extracts
maximal growth, in a given target time.

Our goal in this paper is to relate the eddy optimal growth in shear flow to the CRW
dynamics. We analyze the discrete spectrum optimal dynamics from the CRW perspective
and exemplify it on the barotropic Rayleigh model of shear instability [3]. Based on this
understanding we suggest a scheme which extands the CRW description to the non modal
growth in more general plane parallel shear flows.
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CRW Formulation in the Rayleigh Model

Consider the 2–D barotropic, inviscid and incompressible Rayleigh model [3], whose
been discussed by [6], which its zonal basic state velocity and vorticity profiles are:

U � �� � Λb for y � b
Λy for � b � y � b� Λb for y ��� b

and q � �� � 0 for y � b� Λ for � b � y � b
0 for y �	� b

(1a,b)

Linearizion of the vorticity equation 
 ∂
∂t � v � ∇ 
 q � 0,2 then yields


 ∂
∂t � U

∂
∂x

 q � � � v � ∂q

∂y � where
∂q
∂y
� Λ � δ 
 y � b 
�� δ 
 y � b 
���� (2a,b)

The discrete spectrum solution can be written then in terms of two CRW edge waves whose
vorticity and streamfunctions are given by:

q � � � q1 
 k � t 
 δ 
 y � b 
 � q2 
 k � t 
 δ 
 y � b 
�� eikx � ψ � � � 1
2k � q1 
 k � t 
 e � k � y � b � � q2 
 k � t 
 e � k � y � b � � eikx(3a,b)

Writing q1
� Q1eiε1 , q2

� Q2eiε2 , and plug (3) in (2) we obtain the CRW equations:

Q̇1
� σQ2 sinε � Q̇2

� σQ1 sinε � (4a,b)

ε̇1
� � kc1

1 � σ
Q2

Q1
cosε � ε̇2

� � kc2
2 � σ

Q1

Q2
cosε � (4c,d)

when the CRW interaction coefficient and their two intrinsic phase speeds are :

σ � Λ
2

e � K � c1
1
� U 
�� b 
�� 1 � 1

K � � c2
2
� U 
 b 
!� 1 � 1

K �"� (5a,b,c)

The CRW phase difference ε � ε2 � ε1 and K � 2bk is the normalized wavenumber. (4)
describes the interaction between two CRWs which interact by advecting the basic state
vorticity of the opposed edge by the meridional velocity they induce there. If the CRWs are
in phase they help each other to propagate counter the basic state wind while if they are anti

2The velocity vector v #	$ u % v &'#	$ U ( u )*% v )+& . The vorticity is taken as the scalar value in the

plane’s perpendicular direction: q # ∇ , v #.- ∂U
∂y (/$ ∂v 0

∂x - ∂v 0
∂y & . The basic state and the small per-

turbation are indicated by overbar and prime, respectively. We also use incompressibility (∇ 1 v # 0)

to write the perturbation in terms of the streamfunction ψ ) ; $ u ) % v ) &2#3$4- ∂ψ 0
∂y % ∂ψ 0

∂x & and q ) # ∇2ψ ) .
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phased they hinder the counter propagation rate. If, on the other hand, the northern CRW is
shifted π � 2 out of phase to the west of the southern wave the CRWs increase each other’s
amplitude where if the phase is � π � 2 the CRWs decay each other. Growing normal modes
are obtained when the two CRWs are phase locked each other to propagate together (ε̇ � 0)
and have equal growth rates (Q̇1 � Q1

� Q̇2 � Q2). (4) can be also written in the matrix form:

q̇ � Aq � q � � q1

q2 � � A � � i � kc1
1 σ� σ kc1

1 � (6a,b,c)

Hence, (6) enables the application of the GST of [5] on the CRW dynamics, in the enstrophy
norm, as is shown next.

Generalized Stability Analysis of CRWs

The solution to (6) can be written in terms of the eigen decomposition of the propagator
matrix eAt or, alternatively, in terms of its Singular Value Decomposition: 3

q 
 t 
 � eAt q 
 0 
 � 
 PeLtR† 
 q 
 0 
 � 
 UΣV† 
 q 
 0 
 (7)

The matrix A can be shown to be normal either when the CRWs have equal intrinsic phase
speeds (c1

1
� c2

2), or in the limit of zero CRW interaction (σ � 0). The CRW interpreta-
tion for these cases is straightforward; when the CRWs have equal intrinsic phase speeds
they should not help or hinder each other’s propagation to remain phase locked and there-
fore maintain a phase difference of π � 2 which is the optimal configuration for growth, as
indicated by (4a,b). Hence, the CRWs would not gain any additional growth by moving
relative to each other and the maximal growth is achieved by the eigenvectors themselves.
With zero CRW interaction no growth is available and the two CRWs become two decou-
pled neutral edge waves which propagate with their own intrinsic phase speeds. [5] showed
also that the maximum instantaneous growth rate is equal to the maximum eigenvalue of
 A � A† 
�� 2 which is simply σ in our case. The CRWs are then symmetric in amplitudes
(Q1
� Q2

� Q) with a phase difference of ε � π � 2. For a finite target time (4a,b) indicates
that synchronous growth yields maximal growth and therefore (4a,b) become:

Q 
 t 
 � Q 
 0 
 exp

�
σ � t

t � 0
sinε 
 t 
 dt � � (8)

3P and R are the eigenvector and biorthogonal eigen vector matrices. L is the diagonal matrice
of eigenvalues λ j, U and V are Unitarian matrices and Σ is a diagonal matrix which composes real
positive values ordered by magnitude along the diagonal. Only if the matrix A is Hermitian the two
decompositions are identical. If the matrix A is normal (commutes with its Hermitian transpose;
AA† # A†A), then it is a necessary and sufficient condition for its eigenvectors p j to be orthogonal
and eRe � λ j � t # σ j. If however A is not normal then σ1 � eRe � λ1 � t and can be shown to be the largest
growth that system (6) can achieve in a given target time t. Hence, in order to obtain the optimal
growth, q $ 0 & should be chosen to be the first column unit vector of V since it would grow by σ1 and
be projected onto the first column of U.
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Thus the CRWs’ optimal phase difference should cross ε � π � 2, while optimally growing
and since growth is symmetric with respect to ε � π � 2 the initial and final optimal phases
 ε0 � εt 
 , should satisfy 
 ε0 � εt 
 � 2 � π � 2.

For wavenumbers whose normal modes are unstable it can be shown that the SVD
becomes:

U � 1�
2
� 1 � ieiε0� e � iε0 � i � ; V � 1�

2
� ie � iε0 1

i � eiε0 � � (9)

and

Σ � ΘeLt ; Θ � � θ 0
0 θ � 1 � ; θ � � sin � ε0 � ε �

2 �
cos � ε0 � ε �

2 ��� (10a,b,c)

where ε � indicates the growing normal mode phase difference. When c1
1 � c2

2, the CRWs
must hinder themelves in order to be phase locked and thus the growing normal mode
phase difference satisfies π � 2 � ε � � π. Hence, any initial phase ε0 � ε � , increases with
time, and since the optimal evolution must cross π � 2, this yields ε0 � π � 2 � εt . From
the same considerations, since 0 � ε � � π � 2 for c1

1 � c2
2, then εt � π � 2 � ε0. For target

time infinity it is clear that the optimal perturbation would be eventually projected onto the
most unstable mode p1 however this does not mean that the optimal way to excite the most
unstable mode is to locate q 
 0 
 on this mode. Choosing q 
 0 
 to be in the direction of the
biorthogonal vector r1, of the most unstable mode then the eigenvalue decomposition of
(7) suggests that at time infinity q 
 t 

	�� r1 � eℜ 
 λ1 � t p1, where � r1 � � 1 if A is not normal.
Hence the biorthogonal phase difference should satisfy εb

� π � ε � .

Where only neutral normal modes exist transient optimal growth can still be achieved.
The singular vectors in this case are the same as in (9) but the singular value matrix becomes

Σ � � g 0
0 g � 1 � ; g ��� r � cosε0

r � cosε0
; r � k � c1

1 � c2
2 �

2σ
(11a,b,c)

For a given r the maximal possible growth G, denoted as the global optimal, is obtained
when ε0

� π,

G � � r � 1
r � 1 � at times T � 
 n � 1

2

 π
δ � n � 0 � 1 � 2 � � � (12a,b,c)

and δ � σ
�

r2 � 1. The optimal evolution is synchronous with 
 ε0 � εt 
 � 2 ��� π � 2. The
global optimal is being achieved when 
 ε0 � εT 
 � 
 π � 0 
 .
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For synchronous growth in the neutral regime and r � 1, (4c,d) can be written as

ε̇ � 2σ 
 cosε � r 
 (13)

Hence, the CRWs can never help each other enough to counter propagate against the
shear which is always forcing the phase difference between the CRWs to decrease with
time. Therefore, in order to obtain optimal growth the CRWs should cross ε � π � 2 while
ε0 � εt . As in the case where r � 1 (of unstable normal modes), for very small target
time 
 ε0 � εt 
 are at the close vicinity of π � 2, where as the target time increases they depart
and the CRWs gain growth which increases until reaching the global optimal configuration
 ε0 � εt 
 � 
 π � 0 
 . As the target time becomes slightly larger than the first global optimal
the CRWs must begin with a slight decaying configuration (tilted with the shear), how-
ever still gaining growth while passing between ε � 
 π � 0 
 . Since the motion is symmetric
with repsect to π � 2 the optimal structure will end up in a slightly decaying configuration
and therefore optimal growth is smaller than the global optimal. As target time increases
further, the CRWs must begin (and end) in a more and more decaying configuration and
eventually for target time π � δ, the CRWs would start at phase difference of ε 
 0 
 � � π � 2,
will experience decay till they reach ε � � π � π, then will start growing until ε � 0 and
finally decay again till ε 
 t 
 � � π � 2. In this case the amount of decay exactly cancels the
amount of growth and eventually no net growth is obtained. The next cycles, for target time
between 
 nπ � δ � 
 n � 1 
 π � δ 
 are identical to the first cycle 
 0 � π � δ 
 , except for the fact that
the CRWs completed already 
 n � 1 
 full cycles which have yielded zero net growth.

Application to a General Shear Profile

Consider a general inviscid, incompressible, shear profile U 
 y 
 with a mean vorticity
profile q 
 y 
 . Then, writing all perturbation variables in the zonal Fourier form of η 
 x � y � t 
 �� ∞

0 η̂ 
 y � t � k 
 eikxdk, we introduce the vorticity perturbation as

q̂ 
 y � t � k 
 � � ∞

y � � � ∞

�
q̂ 
 y � � t � k 
 δ 
 y � � y 
�� dy ��� � ∞

y � � � ∞
q̃ 
 y � � t � k 
 dy � � (14)

The “vorticity density kernel” q̃ induces a density streamfunction ψ̃ 
 y � y � � t � k 
 which must
satisfy q̃ � � k2ψ̃ � ψ̃yy and therefore, ψ̃ 
 y � y � � t � k 
 � q̂ 
 y � t � k 
 G 
 y � y � 
 with the Green func-
tion G 
 y � y � 
 � � e � k � y � y � � � 2k. Thus, the inversion of (14) can be written as

ψ̂ 
 y � t � k 
 � � ∞

y � � � ∞
q̂ 
 y � � t � k 
 G 
 y � y � 
 dy � � (15)

Substitute (14) and (15) in the linearized vorticity equation (2a) and write the vorticity
in terms of amplitude and phase : q̂ 
 y � t 
 � Q 
 y � t 
 eiε 
 y � t � , we obtain for the real and the
imaginary parts:

Q̇ 
 y 
�� Q 
 y 
 � � kqy 
 y 
 � ∞

y � � � ∞

�
Q 
 y � 
 � Q 
 y 
 � G 
 y � y � 
 sinε 
 y � y � 
 dy � � (16a)
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ε̇ 
 y 
 � � k � U 
 y 
 � qy 
 y 
 � ∞

y � � � ∞

�
Q 
 y � 
�� Q 
 y 
 � G 
 y � y � 
 cosε 
 y � y � 
 dy ��� � (16b)

where ε 
 y � y � 
 � ε 
 y 
 � ε 
 y � 
 . (16) is the continuous analogue of (4) and can be interpreted
as follows. Each CRW kernel changes its amplitude and phase due to meridional advection
of the mean vorticity in its own layer, where the meridional wind is attributable to all
other kernels and attenuated according to the Green function G 
 y � y � 
 . The CRW kernel’s
amplitude Q 
 y 
 , grows due to all CRW kernels, located at y ���� y, which are phase shifted
by 0 � ε 
 y � y � 
!� π and advects the mean vorticity in the opposite direction of qy 
 y 
 . The
phase change is via the Rossby mechanism where the CRW kernels which are phase shifted
by � π � 2 � ε 
 y � y � 
�� π � 2 will “help” the CRW kernel at y to propagate counter the mean
wind U 
 y 
 , while the CRWs which are phase shifted by π � 2 � ε 
 y � y � 
 � 3π � 2 will “hinder”
the counter propagation. Hence the nature of interaction is the same as been exemplified
on the two Rossby edge waves in the Rayleigh model, however now the interaction is in
between infinite number of CRW kernels, were every kernel affects and being effected by
all other kernels.

Finally, when (16) is being discretized in y to N layers it can be written as:

˙̂q � Aq̂ � A � � ik �U � QyG � (17a,b)

where U, Qy are diagonal matrices of the shear and the vorticity gradient. G is the Green
function Hermitian matrice. GST analysis can be then applied on (17), while the simple
nature of CRW interaction is preserved.
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